SESSIONS SPECIFICALLY DESIGNED for Practicing Communications Engineers

TOP-LEVEL INDUSTRY EXECUTIVES ABOUT:

- Facilitating the Integration of New Mobile Wireless Internet Technologies
- Federal Communications Policies Impacting the US Telecom Sector
- The Impact of an Increased Network Capacity
- Standardizing, Deploying & Commercializing IoT
- Building, Monetizing & Litigating a Patent Portfolio
- Military, National & International Spectrum Processes
- SDN & NFV Impact on Enterprise Networking
- Applying Legacy Principles to New & Emerging Technology
- Security Challenges in Network Function Virtualization
- Issues Facing Big Data Cloud Networking
- Making Spectrum Sharing a Reality
- What’s Beyond IEEE 802.11ac
- Much more

with the Most Influential Communication Engineers, Industry Leaders, Government Officials and Academics from more than 60 Countries

with Industry Leaders during Keynotes, Executive Panels and Dialogue with Industry Executives Session

LEARN FROM

INTERACT

IEEE GLOBECOM’14 PATRONS

IEEE GLOBECOM’14 SUPPORTERS

IEEE GLOBECOM’14 MEDIA PARTNERS

For conference updates, visit www.ieee-globecom.org/2014
TABLE OF CONTENTS

Welcome ... 2
Program Tracks 3
Keynote Speakers 5
Dialogue with Industry Leaders 8
Executive Forums 9
Panels ... 10
Interactive Sessions 18

Demonstrations 23
Tutorials .. 29
Workshops 31
Social Program 32
Registration & Hotel 33

PROGRAM AT A GLANCE

<table>
<thead>
<tr>
<th>Time</th>
<th>MONDAY</th>
<th>TUESDAY</th>
<th>WEDNESDAY</th>
<th>THURSDAY</th>
<th>FRIDAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>07:30</td>
<td>Breakfast</td>
<td>Keynotes</td>
<td>Keynotes</td>
<td>Keynotes</td>
<td>Tutorials & Workshops</td>
</tr>
<tr>
<td>08:30</td>
<td>Tutorials & Workshops</td>
<td>Coffee</td>
<td>Coffee</td>
<td>Coffee</td>
<td>Coffee</td>
</tr>
<tr>
<td>09:30</td>
<td>Tutorials & Workshops</td>
<td>Industry Sessions</td>
<td>Industry Sessions</td>
<td>Industry Sessions</td>
<td>Tutorials & Workshops</td>
</tr>
<tr>
<td>10:00</td>
<td>Tutorials & Workshops</td>
<td>Industry Sessions</td>
<td>Industry Sessions</td>
<td>Industry Sessions</td>
<td>Tutorials & Workshops</td>
</tr>
<tr>
<td>10:15</td>
<td>Tutorials & Workshops</td>
<td>Coffee</td>
<td>Coffee</td>
<td>Coffee</td>
<td>Coffee</td>
</tr>
<tr>
<td>10:30</td>
<td>Tutorials & Workshops</td>
<td>Industry Sessions</td>
<td>Industry Sessions</td>
<td>Industry Sessions</td>
<td>Industry Sessions</td>
</tr>
<tr>
<td>10:45</td>
<td>Tutorials & Workshops</td>
<td>Coffee</td>
<td>Coffee</td>
<td>Coffee</td>
<td>Coffee</td>
</tr>
<tr>
<td>12:15</td>
<td>Lunch</td>
<td>Awards Luncheon</td>
<td>Lunch</td>
<td>Lunch</td>
<td>Lunch</td>
</tr>
<tr>
<td>12:30</td>
<td>Lunch</td>
<td>Lunch</td>
<td>Lunch</td>
<td>Lunch</td>
<td>Lunch</td>
</tr>
<tr>
<td>13:30</td>
<td>Tutorials & Workshops</td>
<td>Industry Sessions</td>
<td>Industry Sessions</td>
<td>Industry Sessions</td>
<td>Tutorials & Workshops</td>
</tr>
<tr>
<td>14:00</td>
<td>Tutorials & Workshops</td>
<td>Coffee</td>
<td>Coffee</td>
<td>Coffee</td>
<td>Coffee</td>
</tr>
<tr>
<td>15:15</td>
<td>Tutorials & Workshops</td>
<td>Industry Sessions</td>
<td>Industry Sessions</td>
<td>Industry Sessions</td>
<td>Tutorials & Workshops</td>
</tr>
<tr>
<td>15:30</td>
<td>Tutorials & Workshops</td>
<td>Coffee</td>
<td>Coffee</td>
<td>Coffee</td>
<td>Coffee</td>
</tr>
<tr>
<td>15:45</td>
<td>Tutorials & Workshops</td>
<td>Industry Sessions</td>
<td>Industry Sessions</td>
<td>Industry Sessions</td>
<td>Tutorials & Workshops</td>
</tr>
<tr>
<td>16:00</td>
<td>Tutorials & Workshops</td>
<td>Industry Sessions</td>
<td>Industry Sessions</td>
<td>Industry Sessions</td>
<td>Tutorials & Workshops</td>
</tr>
<tr>
<td>16:15</td>
<td>Tutorials & Workshops</td>
<td>Industry Sessions</td>
<td>Industry Sessions</td>
<td>Industry Sessions</td>
<td>Tutorials & Workshops</td>
</tr>
<tr>
<td>17:30</td>
<td>Tutorials & Workshops</td>
<td>Industry Sessions</td>
<td>Industry Sessions</td>
<td>Industry Sessions</td>
<td>Industry Sessions</td>
</tr>
<tr>
<td>18:00</td>
<td>Welcome</td>
<td>Dialogue with Industry Leaders</td>
<td>Banquet</td>
<td>OPEN</td>
<td>OPEN</td>
</tr>
<tr>
<td>19:00</td>
<td>Welcome</td>
<td>Poster Session</td>
<td>Young Professionals</td>
<td>Breakfast</td>
<td>Breakfast</td>
</tr>
<tr>
<td>20:00</td>
<td>Welcome</td>
<td>Reception</td>
<td>Industry Executives</td>
<td>Breakfast</td>
<td>Breakfast</td>
</tr>
<tr>
<td>21:30</td>
<td>Welcome</td>
<td></td>
<td></td>
<td>Breakfast</td>
<td>Breakfast</td>
</tr>
</tbody>
</table>
As Senior Executive Vice President – Technology and Network Operations for AT&T, it’s with great pleasure that I, also as the General Chair for our IEEE GLOBECOM 2014 Conference, welcome you to the great state of Texas and its capital city of Austin. The theme for this year’s conference is “The Great State of Communications,” and I can think of no more appropriate theme given who we are and where we are.

Well-known for live music, entertainment and technology, Austin has become a center of focus in the technology world. Austin is home to both technology bellwethers and start-ups. Innovation, like music, is part of the city’s rhythm. AT&T has served this great state for 138 years and employs more than 35,000 Texans. As a leading technology innovator, we were pleased to debut our U-verse with AT&T GigaPower service in Austin earlier this year, with speeds up to 1 gigabit/sec for both uploads and downloads. These are exciting times for technology in the U.S. and the world, and Austin is a prime example of what’s possible in a hotbed of innovation, talent and technology.

The Great State of Communications theme at this year’s conference will allow us to focus on the hottest topics facing our industry today and well into the future. Topics include:

- Beyond 5G, IoT
- Big Data Analytics
- Cloud Computing
- Cross-Disciplinary Applications
- Emerging Technologies
- Business, Government and Policy
- Engineering Management

I look forward to the lively discussions sure to take place this year’s event. Thanks for your efforts and energy in making this year’s show a great one. Let’s kick the tires a bit and see what we come up with.

John Donovan
General Chair

LOOK FORWARD TO SEEING YOU IN AUSTIN!
ACCESS TECHNOLOGIES
Designed for the communications engineer working on various aspects of wireless and wired communications, this track includes topics covering 5G access technologies and next generation WiFi. Some highlights for each day include:

<table>
<thead>
<tr>
<th>Monday 8-December</th>
<th>Tuesday 9-December</th>
<th>Wednesday 10-December</th>
<th>Thursday 11-December</th>
<th>Friday 12-December</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NETWORK AND INFORMATION
Designed for the information and networking technology professional, this track includes topics on software-defined networking (SDN), network-function virtualization (NFV), and the wired and wireless networks that benefit from this network evolution. Some highlights for each day include:

<table>
<thead>
<tr>
<th>Monday 8-December</th>
<th>Tuesday 9-December</th>
<th>Wednesday 10-December</th>
<th>Thursday 11-December</th>
<th>Friday 12-December</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMERGING APPLICATIONS
Designed for the technology and engineering professional working in emerging applications for communications and networking, this track includes topics in emerging areas including the cloud, internet-of-things, public safety, energy, and other applications. Some highlights for each day include:

<table>
<thead>
<tr>
<th>Monday 8-December</th>
<th>Tuesday 9-December</th>
<th>Wednesday 10-December</th>
<th>Thursday 11-December</th>
<th>Friday 12-December</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ENABLING TECHNOLOGIES
Designed for the hardware and/or software engineer working in the broader supporting ecosystem for communications and networking industries, this track includes topics covering design and development tools, test and measurement, software-defined radio, and other computing technologies that enable today’s and tomorrow’s communication networks. Some highlights for each day include:

<table>
<thead>
<tr>
<th>AM</th>
<th>Monday 8-December</th>
<th>Tuesday 9-December</th>
<th>Wednesday 10-December</th>
<th>Thursday 11-December</th>
<th>Friday 12-December</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>PM</th>
<th>Monday 8-December</th>
<th>Tuesday 9-December</th>
<th>Wednesday 10-December</th>
<th>Thursday 11-December</th>
<th>Friday 12-December</th>
</tr>
</thead>
</table>

BUSINESS AND GOVERNMENT
Designed for engineering, business, legal, or government professionals that are broadly interested in issues surrounding the communications and networking industries, this track includes topics covering patent issues, spectrum policy, career, management and other business topics. Some highlights for each day include:

<table>
<thead>
<tr>
<th>PM1</th>
<th>Monday 8-December</th>
<th>Tuesday 9-December</th>
<th>Wednesday 10-December</th>
<th>Thursday 11-December</th>
<th>Friday 12-December</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>PM2</th>
<th>Monday 8-December</th>
<th>Tuesday 9-December</th>
<th>Wednesday 10-December</th>
<th>Thursday 11-December</th>
<th>Friday 12-December</th>
</tr>
</thead>
</table>
EDWARD G. AMOROSO
Chief Security Officer
AT&T Inc.

Recent Advances in Cloud Security
As individuals and organizations continue to accelerate their use of cloud infrastructure, services, and applications, security concerns will also continue accelerate. A range of security solutions for cloud is presented here, including private clouds behind perimeters, public cloud with dedicated perimeters, encrypted content embedded in cloud, containerized session access to cloud, and run-time virtualization of cloud objects. Examples are provided using commercially available cloud security products and services.

Biography: Dr. Edward G. Amoroso currently serves as Senior Vice President and Chief Security Officer at AT&T, where his primary responsibilities lie in the real-time protection of AT&T’s vast enterprise, network, and computing infrastructure, including its emerging LTE mobile network. Ed’s team is presently focused on creating innovative means for reducing the risk of advanced persistent threat (APT), distributed denial of service (DDOS), mobile malware, and cloud infrastructure attacks targeting AT&T and its customers.

During his twenty-nine year career with AT&T, beginning at Bell Labs, Ed has focused exclusively on cyber security, working on projects ranging from Unix operating system security to critical infrastructure protection design. Ed is the author of dozens of technical papers and reports, as well as five published books on the topic of cyber security. For the past twenty-three years, he has also served as adjunct professor of computer science at the Stevens Institute of Technology, where he has introduced roughly 2,500 graduate students to the topic of computer security.

Ed holds the BS degree in physics from Dickinson College, and the MS and PhD degrees in computer science from the Stevens Institute of Technology. Ed is also a graduate of the Columbia Business School. In 2000, Ed was awarded the AT&T Labs Technology Medal and was elected an AT&T Fellow in 2009. Ed’s work has been featured in major news media such as the Wall Street Journal, the New York Times, and CNN. He recently completed, with his seventeen-year-old son Matthew, a high school textbook on computer science entitled “From Gates to Apps,” available from Silicon Press.

JAMES TRUCHARD
President, CEO, and Cofounder
National Instruments

Next-Generation Tools for Next-Generation Wireless Research
With the widespread adoption of smart devices, wireless consumers’ demand for data has increased exponentially and forced service providers to invest in new and faster technologies to keep up with the demand. Even with the planned 4G rollouts, industry experts agree that a fifth generation or 5G is inevitable. 5G holds the promise of everything and nothing because it has yet to be defined. It is needed to increase network capacity; however, many researchers view 5G as an inflection point—an opportunity to expand the capabilities of our wireless networks and perhaps redefine the term “network.”

Today’s cellular networks are plagued by inherent long and unpredictable latencies, and the use of a single-data-pipe, one-size-fits-all approach to connected devices virtually eliminates the possibility of a heterogeneous network that could potentially serve a broader class of applications beyond Internet data. A multidata-plane, low-latency network could not only impact the world economy but surely improve all of our lives. Against this backdrop, wireless researchers have a blank sheet of paper for designing 5G, so the potential of 5G lies with them and their ability to manage the system complexities created by advancements in communication, computation, and control technologies. Applying traditional “siloed” design approaches to solve the 5G puzzle could in fact be the bottleneck preventing a new network vision because these approaches tend to “reinvent the wheel.” Innovative technologies that can be created, designed, simulated, and prototyped faster lead to faster deployment.

At this session, Dr. James Truchard, CEO, Cofounder and President of National Instruments, explores the evolution of system design as a discipline and discusses how new graphical approaches can be applied to the complex system challenges of 5G.

Biography: Named an Innovation Agent by Fast Company, James Truchard, president and CEO, cofounded National Instruments in 1976 and has pioneered the way scientists and engineers solve the world’s grand engineering challenges.

As one of Forbes’ America’s Favorite Bosses, Dr. James Truchard, commonly known around NI as Dr. T, has led the company from a three-man team to a multinational organization recognized as a Fortune 100 Best Places to Work and one of the top 25 “World’s Best Multinational Workplaces” by the Great Places to Work Institute.

Under Truchard’s leadership, the company’s long-term vision, known as the 100 year plan, and focus on improving the world by providing tools that accelerate productivity, innovation, and discovery, has led to strong, consistent company growth and success of its broad base of customers, employees, suppliers, and shareholders. Learn more about the NI company story at ni.com/company.

Additionally, Truchard has been recognized with the Woodrow Wilson Award for Corporate Citizenship for his community involvement with organizations including: the Engineering Foundation Advisory Council, The University of Texas at Austin Chancellor’s Council, Austin Software Council, and FIRST Robotics.

Truchard holds a doctorate in electrical engineering, as well as a master’s degree and bachelor’s degree in physics, all from the University of Texas at Austin. Truchard earned his master’s and doctorate degrees while working full-time as the managing director of the acoustical measurements division at the UT Applied Research Laboratories.
PAN KAJ PATEL
Executive Vice President & Chief Development Officer
Cisco

Are you ready for the Internet of Everything?
The Internet fundamentally transformed the world... The Internet of Everything will be responsible for creating the trillions of dollars of value that is the Internet of Everything’s potential. The people and the companies who come up with the best ideas, who discover the most effective and efficient ways to use the Internet of Everything will be the ones who succeed in the future. Join Pankaj Patel, Cisco’s Executive Vice President and Chief Development Officer as he discusses how Cisco is committed to innovation, simplicity, building winning teams and helping customers exceed their goals.

WEN TONG
IEEE & Huawei Fellow
Head of Wireless Research
Head of Communications Technologies Laboratories, Huawei 2012 LAB

5G Wireless Goes Beyond Smartphones
The 5G wireless will bring a dramatically improvement of end user experience than that of today. 5G is a tool for telecom operators to explore new revenue streams from verticals by transforming the industries to improve efficiency and enable a vast range of innovations, such a transformation is emerging and 5G will make it pervasive. This talk will also present a set of key enabling technologies for 5G and to discuss the challenges and impacts in the context to meet much more diversified requirements than the previous generations, a much more extensive joint effort across variety of industries becomes essential to make 5G a success.

Biography: Pankaj Patel is Executive Vice President and Chief Development Officer at Cisco. He is responsible for leading the development and execution of Cisco’s $36.3 billion technology portfolio across a global team of more than 28,000 employees. He drives Cisco’s technology innovation strategy to transform how people connect, communicate and collaborate through integrated hardware and software platforms and architectures from Cisco’s routing, switching, security, mobility, video, collaboration, data center and cloud offerings.

Patel holds a bachelor’s degree in engineering from the Birla Institute of Technology and Science in Pilani, India, and a master’s degree in electrical engineering from the University of Wisconsin-Madison. In 2003, he was awarded a patent in the area of multi-service architecture.

Biography: Wen Tong is the IEEE Fellow and Huawei Fellow; the Head of Wireless Research, and the Head of Communications Technologies Laboratories, Huawei 2012 LAB

Prior to joining Huawei in March 2009, Dr. Wen Tong was the Nortel Fellow and global Head of the Network Technology Labs at Nortel. He received the M.Sc. and Ph.D degrees in Electrical Engineering in 1986 and 1993 and joined the Wireless Technology Labs at Bell Northern Research in 1995 in Canada. He has pioneered fundamental technologies in wireless with 180 granted US patents. Dr. Tong was Nortel’s Most Prolific Inventor.

Dr. Tong has conducted the advanced research work spanning from 1G to 4G wireless at Nortel. He had been the director of Wireless Technology Labs from 2005 to 2007. From 2007 to 2009, Dr. Tong was the head of Network Technology Labs, responsible for Nortel’s global strategic technologies research and development. In 2007, Dr. Tong was inducted as Nortel Fellow.

Since 2010, Dr. Tong is the vice president and head of Huawei wireless research leading one of the largest wireless research organizations in the industry with more than 700 research experts. In 2011, Dr. Tong is appointed the Head of Communications Technologies Labs of Huawei 2012 LAB, a corporate centralized next generation research initiative. In 2011, Dr. Tong was elected as Huawei Fellow.
KEYNOTE SESSION
Thursday, 11 December 2014 • 08:30 – 10:00
Chair: Mahmoud Daneshmand, Stevens Institute of Technology

ALICIA ABELLA
Assistant Vice President (AVP)
AT&T Labs

Cloud Computing: A New Strategic Infrastructure

Since the term was first uttered publicly in 2006, cloud computing has acquired many definitions, been embraced by some and feared by others, been called disruptive, and reached a point where it's no longer an "if" for many businesses but a must.

The term “cloud computing” in the aforementioned sentence could easily be replaced by other terms taken from our modern technological history, and it would still be accurate. This talk will draw parallels between cloud computing and historically disruptive technologies that were strategic to the national and global economy. For example, when viewed as an infrastructure, cloud computing can be thought of as strategic to the economy as the highway infrastructure was in the 20th century. When considering commoditization and standardization, they may prove as vital to the proliferation of cloud computing as the standardization of intermodal containers was to the shipping industry. When looking at the cloud ecosystem, companies, both big and small, are competing to provide cloud technologies and services, in some cases even diverting from their main line of business, just as shipping companies emerged as a result of the shipping needs of the 20th century. Cloud computing as a global infrastructure, standardization of cloud technology components, and the formation of an industry solely devoted to cloud computing are some of the compelling trends and drivers that we will explore in this talk.

Biography: As AVP of Cloud Technologies and Services Research Organization, Dr. Abella has held positions that allow her to demonstrate her skills in a broad research spectrum which have unfolded into her organization’s current responsibilities which include research in cloud computing, distributed storage, human-computer interaction, mobile services, SIP/VoIP technology, ubiquitous computing, and emerging devices.

In 2013, Dr. Abella received Columbia University’s Medal of Excellence, an award given each year to an alumnus or alumna, under 45 years of age, whose record in scholarship, public service, or professional life is outstanding. This is the first time since 1929, when the award was first given, that Columbia has awarded the medal to an engineer. In 2011, she was selected by President Obama to be on his Presidential Advisory Commission for Educational Excellence for Hispanics. Also in 2011, she was inducted into the prestigious WITI (Women in Technology International) Hall of Fame. In 2010, she was honored as one of the Top Five Women of the Year by Hispanic Business Magazine. She is also a member of the elite group of AT&T Science and Technology Medal award winners and recipient of the Hispanic Engineers National Achievement Award for Outstanding Technical Achievement.

RAJESH PANKAJ
Senior Vice President, Engineering
Qualcomm Research

Future of Wireless

Rajesh Pankaj, Senior VP Engineering, Qualcomm Technologies, Inc. will discuss the future of Wireless and the latest technology advancements Qualcomm is working on, including 5G, LTE-unlicensed and small cells, in an effort to solve the 1000x mobile data challenge and improve network efficiencies and the user experience.

Qualcomm aims to be a leading force in bringing 5G to life. Rajesh will speak on the latest developments with 5G and how it is about enabling new services and devices, connecting new industries, and empowering new user experiences. He will delve into how broader dimensions of improvements will drive new 5G services and how a unified 5G design is scalable and adaptable across extreme variations of use cases.

The number of consumers utilizing mobile devices such as smartphones and tablets on a daily basis has grown significantly and is predicted to continue to grow 1000 times over the next decade or so. This growing trend results in a dramatic increase in data usage which puts pressure on networks and ultimately affects network performance and the user experience. Network operators have to address this issue in order to meet the needs of their customers and this growing demand. Qualcomm is working on solutions to cost-effectively meet the 1000x mobile data challenge. Join Rajesh as he shares information on the different technologies Qualcomm is developing to help address the 1000x mobile data challenge. This will include information on making use of all spectrum types, including LTE in unlicensed spectrum, and how network densification through the use of hyper-dense small cells will provide greater efficiencies in spectrum and the user experience.

Biography: Rajesh Pankaj is a senior vice president of engineering at Qualcomm Research. He currently oversees Qualcomm Research’s Systems Engineering and Systems Integration and Test departments in San Diego, California. He also directs Qualcomm Research’s international offices in Austria, China, Germany, India, and Korea. In this role, he leads the operational efforts for a broad portfolio of research projects with topics ranging from next generation wireless networks to innovative technologies such as 3G HetNets, LTE, and small cells. Another project under Pankaj’s purview is pervasive computing, commonly known as context awareness. Engineers on this project explore sensor capabilities on mobile phones, making devices more aware of a user’s context.

Pankaj holds a PhD and Master of Science in electrical engineering and computer science from the Massachusetts Institute of Technology and a Bachelor of Science in electrical engineering from the Indian Institute of Technology, Kanpur, India. Pankaj holds more than 15 patents and is a member of IEEE.
The communications industry has experienced a thirty-year explosion in growth that connected much of the world with the Internet. The past ten years alone saw the advent and seemingly overnight spread of the smartphone, as well as new wireless standards that provide us with a faster connection in our pockets than we used to have in our houses. In this special session, we ask a panel of industry leaders, “What might the next ten years show us?” and “What can we learn from the previous decade to position ourselves for maximum contribution in the coming decade?” This dialogue will feature audience interaction with our distinguished panel, and is open to both technical and industry program participants.
Tuesday, 9 December 2014 • 10:30 – 12:15
EF-1: Network Transformation

Moderator: Paritosh Bajpay, VP, Domain 2.0 Services Design, AT&T Labs
Panelists: Don Fendrick, VP & CTO, Alcatel-Lucent
Kireeti Kompella, Senior VP & CTO, Juniper Networks
John Lazar, CEO, MetaSwitch
Rod Naphan, CTO & Senior VP, Fujitsu Network Communications
Doug Wolff, VP & CTO, Ericsson

The User-Defined Network Cloud (UDNC) is a network transformation vision for the network of the future. The goal is to build a smart, cloud-like network that can address business changes, customer needs and deliver new and unique services to customers quicker than before. The UDNC being built is a global first at this scale.

Software-Defined Networks (SDNs) and Network Function Virtualization (NFV) are two key technologies used in UDNC. SDN shifts control of the network from hardware to software, removing pre-defined physical limits. This creates an "intelligent" network that is more flexible, efficient and aware of applications. NFV moves network functions from hardware-based appliances into software platforms inside virtual computing machines. This means we can update network functions from almost anywhere and do it quickly without having to redeploy new hardware. We can dynamically reroute traffic, add capacity and introduce new features through programmable, policy-based controllers.

UDNC helps operators meeting the growing demand and evolving nature of communications. It also allows operators to work with new suppliers and take advantage of new innovations more quickly and efficiently. The supplier base is expanded with the inclusion of small and nimble companies for their innovative capabilities, as well as larger, more experienced companies to tap into economies of scale.

The executives of this forum will highlight the UDNC network architecture, management functions and suppliers’ innovations towards the vision.

Wednesday, 10 December 2014 • 10:30 – 12:15
EF-2: 5G Vision: Requirements and Key Technologies

Moderator: Wonil Roh, VP, Wireless, Samsung
Panelists: Chih Lin I, China Mobile Research Institute
Yoshihisa Kishiyama, NTT DoCoMo, Inc.
Eric Dahlman, Ericsson Research
Peiying Zhu, Huawei Technologies Canada Co., Ltd.
John Smee, Qualcomm Incorporated
Rakesh Taori, Samsung Electronics Co., Ltd.

The race to search for innovative solutions to enable the Next Generation Mobile Communications (5G era) has recently begun worldwide. In early 2013, the European Commission announced that it would invest €50 million in 2013 for 5G research in multiple projects such as METIS, quickly followed by the formation of the Chinese Government-led IMT-2020 Promotion Group in February 2013, the initiation of the Korean Government-led 5G Forum in May 2013, and the formation of 2020 and Beyond Ad-hoc within ARIB (Association of Radio Industries and Businesses), Japan, in October, 2013. While the standardization of 5G specifications in standards bodies such as the Third Generation Partnership Project (3GPP) and the formal ratification of 5G standards by the International Telecommunication Union (ITU) are still several years away, many share the vision of targeting 2020 for the initial commercialization of 5G cellular with drastically enhanced user experiences in several aspects including Gbps data rate support.

This session aims to bring together the experts from the mobile communications industry worldwide for presentations and discussion on the 5G vision and technologies, ranging from components, algorithms, modern, and network design to services along with the recent 5G global activities and progresses.

Thursday, 11 December 2014 • 10:30 – 12:15
EF-3: Internet of Things: From Standardization to Deployment and Commercialization

Moderators: Rasmus Nielsen, Cisco Systems
Neeli Prasad, SAI Technologies
Panelists: Sean Parham, VP, Cisco Systems
Dilip Krishnaswamy, IBM
Rob Chandhok, Senior VP, Qualcomm
Liam Quinn, Senior Fellow, Dell
David Fuller, VP, National Instruments

By 2020, the Internet of Things is expected to drive the deployment of 50 billion connected devices and a value-at-stake of $19 trillion. What started as a concept for providing universal identities in the form of RFIDs has evolved into a domain encompassing numerous technologies from low-power sensor networks to cloud applications as well as a whole new breed of business models. From being a concept attracting plenty of research, the domain has been adopted by multiple standardization bodies consolidating the many industrial best practices across numerous verticals and industrial players from Machine-to-Machine approaches of service providers to the improvement of operational excellence by both larger and smaller enterprises.

The state of the Internet of Things has reached a breaking point with a large number of pure players providing offerings across the whole range of different services from low powered devices focusing on the ease-of-use to device management platforms including connectivity management. On the application side a number of platforms are available providing different sets of capabilities including support for application development to targeted platform where enterprises can develop their own vertical-targeted applications.

The focus of this forum is to learn from executives of major companies to provide a unified view of the state of the Internet of Things from their aspiration into the Internet of Things.
The demand for mobile data is increasing at a rapid pace, with the increasing use of smartphones and video applications. Wi-Fi is increasingly seen as an important piece of this market, with projections of more than half of all mobile data being off-loaded to Wi-Fi by 2018.

The IEEE 802.11 standardization group recently ratified 802.11ac as the newest member of the 802.11 family of Wi-Fi standards. While 802.11ac specified a number of improvements over 802.11n such as: (i) up to 8 spatial streams (ii) mandatory support of bandwidths up to 80 MHz and (iii) multi-user MIMO on the downlink, these improvements mainly improve the per-link throughput on the downlink. In order to satisfy the requirements of future high density deployments of Wi-Fi, it is important to consider other metrics for system performance, such as area-throughput, which are more relevant in use cases where there are dense deployments of access points and stations. Recently, 802.11 started a new task group, 802.11ax, to develop the next generation of Wi-Fi physical (PHY) and medium access control (MAC) protocols that would satisfy these requirements.

In this panel, we would like to discuss new technologies that would need to be incorporated in 802.11ax in order to meet the stated goal of improving the average throughput per station by at least a factor of four, in dense deployments. A partial list of these technologies includes:

- Uplink multi-user MIMO
- Full-duplex wireless
- Inter-AP coordination
- OFDMA
- Scheduled MAC

Carriers are deploying technologies like Network Function Virtualization and Software Defined Networks promise to reshape today’s network infrastructure into a globally-distributed, heterogenous computing platform. NFV and SDN propose a variety of software components that are aware, at some level of abstraction, of the network’s capabilities. These technologies effectively re-envision the network infrastructure with a layered software perspective in contrast to the traditional siloed view of independent infrastructures organized by proprietary physical elements dedicated to a specific type of service. NFV and SDN are increasingly based on open source components in addition to proprietary developments. These approaches envisage a change in the lifecycles of network elements into independent lifecycles for hardware and software components. Operating multiple services on a common infrastructure through virtualization promises savings in capital costs, but implies potential operational changes. Developments of new capabilities on and in this programmable infrastructure are increasingly done through Proof of Concept mash-ups rather than formal standardization programs. The panelists will provide their perspectives on recent developments of NFV and SDN technologies in carrier networks.

Many “Smart Grid” implementations have achieved real-time data and command flow to support optimization and energy management. This foundation is primed for the deployment of novel business models and application-layer technologies which enable a new marketplace for energy services.

Following the paradigm of the telecommunication sector, the next generation energy service market will include development of applications which use the Smart Grid as a base-platform to provide advanced, next-generation services to the customers of the power grid.

This panel session will explore the use of Smart Grid deployments as an application development platform. The panel will capture current trends as well as future aspects, including energy management, energy analytics, Internet of Things, Machine to Machine communications, personalized applications and peer-to-peer energy exchange. The panelists will present viewpoints which stem from real-world deployment of Smart Grid systems, advanced applications, and challenges related to technology and business aspects of the Smart Grid.

With a tremendous proliferation of bandwidth-thirsty applications, ranging from online learning, mobility, to university research, and cloud computing, carriers more than ever, are reevaluating their transport networks. We are seeing a migration to 100G in both the Metro and Regional networks based on pressure to continually lower costs, improve service velocity and provide higher bandwidth services. While 10G has been a dominate Metro transport rate and is still showing signs of longevity, we will consider drivers for metro 100G, key applications, upcoming 100G technology evolutions, and look at migration to even larger rates.

This is a panel reviewing significant policy initiatives adopted by, or under consideration in, Congress, the White House and the Federal Communications Commission, and discuss how these policies have shaped, or will impact, the nation’s role as a technology leader. Issues to be addressed will focus on recently held or planned spectrum auctions;
standards for interoperability and ease of deployment for network specialized maintenance costs and enable network services quicker which manyfold: operators can save their equipment costs, power consumption, specialized maintenance costs and enable network services quicker which are mainly controlled by programmable software. Industry-wide effort has already started, with many standards organizations developing and ratifying standards for interoperability and ease of deployment for network virtualization. For example, ETSI NFV, ONF, Open Flow, and Open Day Light are actively working in close collaborations with 3GPP, IETF, DMTF, IEEE to enable the rapid deployment of virtualized solutions in the operator’s networks.

While network function virtualization opens up the door for flexible service creation and rapid deployment, it also adds additional security challenges attributed by the cloud computing, virtualization and software defined network aspects of the network. The panel will consist of operators, vendors and security experts who are actively involved in research, standards and trial deployment. The audience will benefit from knowing the technology and industry trends, security threats and possible mitigation techniques along with the opportunity to interact with the industry experts.

Tuesday, 9 December 2014 • 16:15 – 18:00
IF-6: Low Power Solutions for IoT
Organizer: Shahriar Emami, Samsung
Panelists: Massoud Pedram, University of Southern California
John Chong, VP, Product and Business Development, Kionix
John Min, Director, Solution Engineering, Imagingation Technologies
Frederik Beer, Universität Erlangen-Nürnberg
Hendricus De Ruijter, Standards Architect

Internet of things also known as “the next internet revolution” is expected usher in a new age in wireless connectivity for all objects resulting in billions of new connections. The new networks will support innovative services and culminate in substantial economic benefits. The IoT nodes must be able to operate for years without requiring battery replacement. The mere scale of deployment constrains us to low power radio paradigm. This forum, consisting of technologists and academicians, examines the motivation, history as well as advances in low power approaches to IoT. The emerging standards and their merits will also be addressed. The panelists will then discuss the remaining challenges and conclude with some potential solutions.

Tuesday, 9 December 2014 • 16:15 – 18:00
IF-8: Digital Predistortion for Power Amplifier Linearization: Trends and Challenges for Future of Communication Systems
Organizer: Takao Inoue, National Instruments

Linearity of power amplifiers (PA) has been and will increasingly become an important system performance metric to support high throughput and reliability wireless communication systems. PA linearity is known to influence bit error rate, spectral leakage, and power efficiency: all of which are crucial system performance metrics.

Traditional linearization techniques have relied on insertion of nonlinear analog components that made the design, implementation, and quality assurance a challenging task. More recently, digital predistortion technique (DPD) has been shown to be particularly suitable for modern wireless communication systems using digital modulation and baseband techniques. Over the years, significant advances have been made in terms of amplifier nonlinearity modeling, characterization, signal processing techniques to combat the nonlinearity and memory effects in the amplifier, and implementation architectures. The PA linearization problem remains to be unique in that it is a mix of RF circuits and digital signal processing problems.

In this panel, we will hear from the leading industry panelists on their views of state of the art techniques, challenges, and outlook for future trends.
Wednesday, 10 December 2014 • 14:00 – 15:45
IF-13: Update on Wired Broadband xDSL/IPTV Systems, including the New G.fast Standard
Organizer: Russ Gundrum, University of Houston

Panelists:
- Vernon Reed, Lead Member, Technical Staff, AT&T Labs
- Jochen Maes, Alcatel-Lucent Bell Labs
- George Ginis, ASSIA, Inc.
- Dhadesugoor R. Vaman, Digital Compression Technology LLC
- Andrew Long, EXFO

Austin has been deemed as one of the battleground cities between Google Fiber and AT&T’s recently announced GigaPower U-verse service. The San Antonio/Austin area was the first in AT&T’s footprint to receive IPTV (U-verse) service back in 2005, so this is an ideal place and forum to provide this update.

Wednesday, 10 December 2014 • 14:00 – 15:45
IF-15: IEEE 802.11ah: Wi-Fi Technology Tuned for Internet of Things (IoT)
Organizer: Amai Ekbal, National Instruments

Panelists:
- Hemanth Sampath, Qualcomm
- Hongyuan Zhang, Marvell Semiconductor
- Sai Shankar NANDAPOPAN, Adeptence/Tensorcom
- Guodong Zhang, InterDigital

The growth of the Internet made everyone realize the huge disruptive potential of not only identifying the things around us, but also communicating with them. Now, with the availability of low-cost, low-power and scalable wireless communication technologies, this grand vision of IoT has the chance of becoming a reality.

In this context, IEEE 802.11 is in the process of creating a new amendment called 802.11ah to specifically create a version of the standard suitable for IoT use cases. In this panel, we will review the challenges faced by the current 802.11 physical (PHY) and medium access control (MAC) layers in IoT scenarios. Then, we will discuss various ideas that could improve these capabilities, with a focus on the solutions chosen by the 802.11ah task group and the reasons behind those choices. In particular, 802.11ah PHY layer uses Sub-GHz spectrum and lower bandwidth channels (1MHz, 2MHz, etc.). The MAC layer incorporates significant changes that increase scalability (via a hierarchical grouping of nodes), improve power save modes, extend range and reduce overhead for small data packet transmissions. Then, we will discuss what further ideas could be incorporated in the next generation of 802.11ah.

In addition to 802.11ah, there are several other wireless access technologies targeting IoT space such as Bluetooth low energy, Zigbee, LTE machine type communications (MTC), Z-Wave etc. We will discuss the relative strengths and weaknesses of these technologies and explore how these technologies may even coexist and satisfy complementary roles in the macro-level IoT architecture.

Wednesday, 10 December 2014 • 16:15 – 18:00
IF-10: Building, Monetizing and Litigating a Patent Portfolio
Organizer: Michael D. Specht, Sterne, Kessler, Goldstein & Fox P.L.L.C.

Panelists:
- Christian Dubuc, Vice President, Acacia Research
- Parham Mottomahan, Senior Advisor, Wavefront
- Leonard Forsy, President, Forsys Consulting Group
- Margie To Pearce, Associate General Counsel, Practice Fusion, Inc.

A strong patent portfolio can add tremendous value to businesses at any stage of development. Businesses can use a patent portfolio to protect their core ideas while adding appeal to potential investors or buyers. Strategic use of patents can restrict competition to the benefit of the patent owner. More controversially, some businesses leverage a strong patent portfolio as a primary source of revenue.

The monetization of patent portfolios, however, might look much different in five years than it does today. With the smartphone patent wars, backlash against non-practicing entities, and groundbreaking Supreme Court decisions, the business of patent portfolios has gained considerable public attention in the past few years. Add to the public attention the new patent application laws that went into effect in 2012, combined with legislation on patent litigation currently being considered in Congress, and it is clear the recipe for business success with patents is changing even if the ingredients remain the same.

Wednesday, 10 December 2014 • 14:00 – 15:45
IF-11: The Challenge Ahead: Identification and Selection of Candidate Technologies and Architectures for 5G Wireless Access
Organizers: David Michelson, UBC
- Yi Wang, Huawei

Panelists:
- Peiying Zhu, Huawei Technologies
- Chih-Lin I, China Mobile Research Institute
- Amitabha Ghosh, Nokia
- Takehiro Nakamura, NTT Laboratories
- Stefan Parkvall, Ericsson Research
- Tomohiko Taniguchi, Fujitsu Laboratories Limited

Such is the demand for better, faster, cheaper wireless access that the quest to develop 5G wireless technology has begun even before any particular specification has been published in any official document by any telecommunication standardization body. The performance goals that have been proposed for 5G by an increasing number of informal research groups and collaboration bodies are both challenging and audacious. There is a growing consensus that meeting these goals will require adoption of wireless access technologies that represent a radical break from the past. As challenging as development and assessment of alternative technologies will be, some of the greatest challenges will be political. This session will begin with summaries of the leading candidate technologies and architectures for 5G wireless access then focus on the need for, opportunities for, and challenges associated with cooperation and collaboration as the wireless industry seeks to develop, standardize and commercialize them. Multiple perspectives, including spectrum allocation, use case definition, technology development, standardization and commercialization, and multiple roles including government, industry and academic that will be necessary to achieve these goals will be considered.
Third IEEE North America Cloud Computing Congress: Cloud Computing already has widespread impact across how we access today’s applications, resources, and data. The IEEE Cloud Computing Initiative (CCI) intends to help accelerate the development and use of cloud computing technologies and help advance the understanding and use of the cloud computing paradigm by coordinating IEEE cloud computing conferences, publications, standards, educational, and regional activities.

This forum features key industry panelists presenting their views on “big data cloud networking.” In recent years there have been great improvements in processing capabilities and storage capacity along with the ability to create networks that interconnect billions of smart terminals and trillions of devices. The panelists will discuss the issues and challenges associated with cloud network architectures, the exponential increase in the number of network-connected devices, and the support of big data services and applications.

Too many good, mid-career engineers are un- or underemployed. One way to address this is to help engineers recognize standardization as a very desirable mid-career path.

Technical education, especially in the US, does not address the importance of standardization, the technical challenges and standardization career possibilities. Perhaps as a result, many working engineers look down on standardization, seeing only a time-consuming political process. With this background it is not surprising that most senior engineers don’t recognize standardization as an intellectually and financially rewarding career. This is unfortunate, as native English speaking senior engineers have the best background to be successful standardization engineers.

This session addresses standardization as a mid-career choice in three parts:
- The large and rapidly growing need for communications standardization engineers is created by the thousands of different communications standardization committees and sub-committees worldwide. A panel of five communications standardization experts, each familiar with different areas of communications standardization, explain how the need for world-wide coordination of communications systems is creating new employment opportunities.
- Why communications standardization is technically challenging. Presented by Ken Krechmer. An overview of isology (the science of standards) focusing on the more rigorous aspects of the field.
- What a standardization engineer does and potential employers. Each panelist presents their experience in standardization and takes questions.

The three technologies must now be considered through a “combined” approach, from standardization perspective, in order to holistically guide the industry. SDOs/Fora harmonization efforts are intensifying in pursuit of synergy-building and harmonization/unification of standardized-architectural-frameworks for SDN, NFV, AMC, and Converged Management of Fixed/Mobile Networks.

This panel session presents a joint White-Paper by the collaborating SDOs/Fora: Industry Harmonization for Unified Standards on Autonomic Management & Control (AMC) of Networks and Services, SDN and NFV, as three complementary emerging paradigms, and on Converged Management of Fixed/Mobile Networks: From silo approach to cross-SDO combined approach. NGMN (an alliance of telecom operators) is working on requirements for 5G. According to perspectives from other various SDOs/Fora and research communities working on 5G as well, various aspects of 5G (e.g. enabling technologies such as AMC, SDN, NFV, IPv6, etc) are being discussed. From AMC point of view, 5G is calling for intelligent/autonomic network capabilities in End-to-End system architectures, including the need for intelligent 5G core networks with embedded Autonomic-Functions (Decision-making-Engines) that optimally and adaptively provision resources and control traffic engineering and QoS mechanisms in such a way as to handle the anticipated huge traffic volumes of diversified traffic flows expected.

Cable Industry has new initiatives to support growing user demands in data, voice and video services. DOCSIS 3.1, DOCSIS Provisioning of EPON (DPOE), Converged Multiservice Access Platform (CMAP) and XPON are among them. This forum will discuss pros and cons of these technologies.
Wednesday, 10 December 2014 • 16:15 – 18:00
IF-16: IPv6 and IoT Challenges
Organizer: Latif Ladid, President UL/IPv6 Forum, Chair IEEE ComSoc IoT Subcommittee

Panelists: Jorge Pereira, Principal Scientific Officer, DG CONNECT, European Commission; The Critical Role of IoT Experimentation
Sebastian Ziegler, Mandat International Vice-Chair, IEEE ComSoc IoT Subcommitte;
IoT and Internet of Things: The Challenges and Opportunities
Srdjan Krco, Co-founder & CEO, DunavNET:
IoT Architecture Approaches in EU
Antonio Jara, Assistant Professor, Post Doc, HES-SO University, HOP Ubiquitous, Vice-Chair IEEE ComSoc Internet of Things (IoT):
The IPv6-based IoT Opportunities and Challenges
Pascal Thubert, Chair, IETF 6TiSCH WG, Cisco Systems:
The Fringe Internet

The public IPv4 address space managed by IANA (http://www.iana.org) has been completely depleted by 1 February 2011. This creates by itself an interesting challenge when adding new things and enabling new services on the Internet. Without public IPv addresses, the Internet of Things capabilities would be greatly reduced. Most discussions about IoT have been based on the illusionary assumption that the IP address space is an unlimited resource or it’s even taken for granted that IP is like oxygen produced for free by nature. Hopefully, the next generation of Internet Protocol, also known as IPv6 brings a solution.

The introduction of IPv6 provide enhanced features that were not tightly designed or scalable in IPv4 like IP mobility, ad hoc services; etc catering for the extreme scenario where IP becomes a commodity service enabling lowest cost networking deployment of large scale sensor networks, RFID, IP in the car, to any imaginable scenario where networking adds value to commodity.

This session will be devoted to analyze the transformative impact of IPv6 on IoT and its advances function, presenting the challenges and solutions being considered in the context of several EU and Korean research projects.

Wednesday, 10 December 2014 • 16:15 – 18:00
IF-18: Programmable Cloud Networking
Organizer: Mark Karol, IEEE Cloud Computing Initiative

Panelists: Steve Diamond, EMC
Hans-Martin Foisel, Deutsche Telekom
Rajeev Agrawal, Nokia
Geng Lin, Google
Chung-sheng Li, IBM
Masum Hasan, Cisco

Third IEEE North America Cloud Computing Congress: Cloud Computing already has widespread impact across how we access today’s applications, resources, and data. The IEEE Cloud Computing Initiative (CCI) intends to help accelerate the development and use of cloud computing technologies and help advance the understanding and use of the cloud computing paradigm by coordinating IEEE cloud computing conferences, publications, standards, educational, and regional activities.

In this session, expert panelists will present their views on “Programmable Cloud Networking.” There are on the many challenges in designing a cloud computing system that can meet various requirements and support a diverse set of cloud applications and services. Many issues need to be addressed, including, but not limited to, security, reliability, architecture, standardization, and economics. Further issues arise when cloud architectures are applied to providing the network functions for mobile broadband networks. The objective is to allocate resources where and when they are needed to help deliver any service or application when the user demands it. The panelists will discuss the issues and challenges and present some potential solutions based on programmable, Software Defined Networking (SDN), and Network Functions Virtualization (NFV).

Wednesday, 10 December 2014 • 16:15 – 18:00
IF-20: Reduce the Overhead Workload of Engineering Management
Organizer: Zhen Zhao, Comcast

Panelists: Zhen Zhao, Comcast
Mehmet Toy, Chair, Programmability Technical Committee;
Chair, Cable Networks and Services Committee
Jorge Salinger, VP, Access Architecture, Comcast
Belal Hamzeh, Director, Principal Architecture, Cablelabs

Currently, there are many software management tools and at Comcast we are using several of them, such as Sonar, ALM, Rally, Splunk, Omniture, SevOne, JIRA and etc. Each tool give out a lot of data to engineering managers. Managers use these data to monitor the process of software development. The problem is there are too much data. Managers have to analyze all these data manually. This brings a lot of overhead to engineering management. It is also possible that some hidden relationships that help with disclosing management problems or improving team work may be undermined by tons of other data.

This panel explores the current and future potential solutions of engineering management problems faced by different size companies. This panel presents the latest breakthroughs in engineering management, as well as some of the exciting opportunities and challenges for this regime. Experts from leading computer engineering companies provide their vision and experience, and will highlight their management solutions.

As a seed of this topic discussion, we propose using parallel coordinate in engineering management at Comcast. Different from those existing engineering management tools that focus on supporting more data to managers, this proposal focuses on analyzing the relationship between different data and disclose possible hidden issues to managers.
Increasing the capacity of cellular networks is becoming one of the most challenging tasks of the mobile industry this decade. As traditional mechanisms to increase spectral efficiency approach their theoretical limits, new and disruptive techniques are needed to satisfy the growing demand for mobile data traffic. Consequently, the fifth generation (5G) cellular system is expected to make use of higher frequency bands in mmWave range to increase the density of the cellular network. While these bands provide the potential for greater capacity, they also impose certain constraints in the design of the future systems to handle mobility and coverage.

For this panel discussion we are inviting speakers to address the possible challenges and requirements of such systems. Those topics and challenges may include: antenna design for eNB and UE, modulation and coding schemes, handoff, small cells, EIRP limits, frequency and channelization, regulatory challenges, form factor, power consumption and other related topics.

Thursday, 11 December 2014 • 14:00 – 15:45
IF-21: mmW Coverage and Mobility for Next Generation Cellular Systems
Organizers: Ali Sadri and Reza Arefi, Intel
Panelists: Ted Rappaport, NYU-Poly
Amitava Ghosh, NSN
Philip Pietraski, InterDigital
Thomas Haustein, Fraunhofer HHI
Wen Tong, Huawei

By 2020, the Internet of Things is expected to drive the deployment of 50 billion connected devices and a value-at-stake of $19 trillion. What started as a concept for providing universal identities in the form of RFIDs has evolved into a domain encompassing numerous technologies from low-power sensor networks to cloud applications as well as a whole new breed of business models. From being a concept attracting plenty of research, the domain has been adopted by multiple standardization bodies consolidating the many industrial best practices across numerous verticals and industrial players from Machine-to-Machine approaches of service providers to the improvement of operational excellence by both larger and smaller enterprises.

The state of the Internet of Things has reached a breaking point with a large number of pure players providing offerings across the whole range of different services from low powered devices focusing on the ease-of-use to device management platforms including connectivity management. On the application side a number of platforms are available providing different sets of capabilities including support for application development to targeted platform where enterprises can develop their own vertical-targeted applications.

Thursday, 11 December 2014 • 14:00 – 15:45
IF-25: Internet of Things: From Standardization to Deployment and Commercialization
Organizers: Rasmus Nielsen, Cisco Systems
Neeli Prasad, SAI Technologies
Panelists: Seth Newberry, OMA
Philip Jacobs, OneM2M
Bilel Jamoussi, ITU
Periklis Chatzimisios, TEIT

Software defined radio is emerging as a valuable tool for hands-on communications education and training that overcomes many of the limitations associated with simulation-based approaches. In this session we provide a forum for in depth presentations and discussion on the use of software defined radio (SDR) as an instructional tool in their respective domains. We offer opportunities for our peer reviewed authors, publishing course and training best practices in the May 2014 issue of IEEE Communications Magazine an opportunity to extend their publications with live presentation and a panel discussion. The scope of this session includes discussion of undergraduate education, graduate curriculums, and software and hardware tools for advanced prototyping.

Thursday, 11 December 2014 • 14:00 – 15:45
IF-27: Hands-on-Education and Training with Software Defined Radio
Organizers: Michele Zorzi, Università degli Studi di Ferrara
Erik Luther, National Instruments
Panelists: Robert G. Mauder, IET
Andreas Achtzehn, Aachen University
Houman Zarrinkoub, Mathworks
THURSDAY, 11 DECEMBER 2014

IF-29: Making Spectrum Sharing a Reality
Organizer: Prakash Moorut, Nokia Networks

Panelists: Durga Malladi, Qualcomm
Uli Rehfuess, Nokia Networks
Michael Ha, FCC
Max Solondz, Verizon Wireless
Dennis Roberson, Illinois Institute of Technology
Preston Marshall, Google

Mobile wireless communication networks will need to cope with the tremendous increase in data traffic anticipated over the next decade. Beyond the levers of increased network densification and enhanced spectral efficiency more radio spectrum is clearly needed for mobile networks to fulfill capacity and coverage demands. Clearing the spectrum, i.e., moving non cellular services out of their currently allocated spectrum bands is one straightforward way to free up more exclusive spectrum for Mobile Broadband use. This has been the best practice over the years, and will continue to be the preferred option for cellular networks. In most cases, however, clearing spectrum requires significant investment and/or can be lengthy. Therefore, in some cases spectrum sharing may be a very efficient means to gain at least partial access to additional spectrum resources for mobile broadband use. Spectrum sharing has become the new reality. It is no longer a question of “if” spectrum sharing will happen but “when” it will happen.

The goal of the panel is to bring together top innovators and thinkers in the spectrum sharing field to discuss technological and policy developments in spectrum sharing in the context of LTE, focusing on the AWS-3, 3.5GHz and 2.3GHz bands as the initial test bands and sharing in the context of future 5G systems. Innovative sharing approaches involving databases such as Authorized/Licensed Shared Access (ASA/LSA) and the FCC’s 3.5GHz Spectrum Access System as well as the value of sensing will be discussed among others.

Thursday, 11 December 2014 • 14:00 – 15:45

IF-22: 5G System Design
Organizers: Preben Mogensen, Nokia
Reinaldo Valenzuela, Alcatel-Lucent

Panelists: Gerhard P. Fettweis, TU Dresden
Chih Lin I, China Mobile Research Institute
Takehiro Nakamura, NTT Laboratories
Erik Dahlinan, Ericsson
Alexei Gorokhov, Qualcomm

5G is expected ready for commercial deployment around 2020. 5G will cover our next generation mobile communication needs towards 2030, where the traffic volume is expected to grow more than a x1000, end-user data to be x10-100 higher, latency to be 5-10 times lower, and the number of connected devices to be x10-100 higher. Other requirements to 5G are significantly improved network energy efficiency and improved battery life time for low power devices – and of course much lower cost per bit.

The target of this panel is to discuss the system aspects of 5G – how do we reach the above stretching targets? The panel will cover aspects of the promising research topics for 5G, the operator requirements to 5G, the roadmap for standardizing 5G, the spectrum aspects for 5G, the network aspects for 5G and the technology aspects for 5G.

We anticipate a lively discussion.

Thursday, 11 December 2014 • 16:15 – 18:00

IF-24: Industry Harmonization for Unified Standards on SDN, NFV, Autonomic Management & Control (AMC), 5G, Unified Management of Fixed/Mobile Networks and IPv6 in the picture
Organizer: Ranganai Chaparadza, IPv6 Forum Research Fellow & ETSI AFI Group on Autonomic Future Internet

Panelists: Ranganai Chaparadza, IPv6 Forum & ETSI AFI
Tayeb Ben Meriem, Orange, ETSI AFI, TMF, NGMN
John Strassner, Huawei, TMF ZOOM
Steven Wright, AT&T Services Inc ETSI NFV
Francisco-Javier Ramón Salguero, Telefonica, ETSI NFV
Takashi Egawa, NEC, ITU-T SG13

Various Standardization Groups (SDOs)/Fora which are working on standards for SDN (Software-Defined/Driven-Networks), NFV (Network-Functions-Virtualization), AMC (Autonomic Management & Control of Networks and Services), NGMN NGCC requirements on Converged Management of Fixed/Mobile Networks, 5G related topics and operator-requirements, and IPv6 as a horizontal topic that brings complementary value to all these areas, were invited to take part in the session: “Autonomic Management & Control (AMC) of Networks and Services, SDN, and NFV, as complementary emerging paradigms—From silo approach to cross-SDO combined approach: Follow-up Workshop to IEEE GLOBECOM 2013 Industry Forum Sessions (Date: 5 June 2014, hosted by TeleManagement™Forum Meeting)”—Report available under: http://www.tmforumlive.org/ieee/. The Groups that were invited to the workshop include: TMF, IPv6 Forum; ETSI NTECH/AFI; ETSI NFV; BBF; NGMN; OMG SDN WG; IEEE NGSW WG; ITU-T SG13 and SG2; 3GPP SA5; Multi-SDO; ONF; OMA; OpenDaylight; IEEE SDN and NFV Sub-Committee; OIF; other-groups. This session aims to communicate the outcome of the 5 June 2014 workshop, pertaining to the SDOs/Fora harmonization efforts on standards for the emerging complementary networking paradigms. The session covers the subject of how SDOs/Fora are now performing certain types of harmonization activities that could make use of Cross-SDO Instruments for Harmonization and Coordination which may enable experts from various groups to work together on harmonization of taxonomy on architectural frameworks, protocols, models, etc, corresponding to all the key emerging paradigms.
probability, wireless service providers may not rely on one “silver bullet” to network topologies incorporating pico and femto cells, and relays. In all control (MAC) techniques and cross layer exploration of new heterogeneous Physical Layer (PHY) algorithms, new upper layer medium access put forth new ideas to address capacity challenges. Proposed ideas span escalating demand. Against this backdrop, wireless researchers continue to the Internet of Things.

Emilio Calvanese Strinati

By 2020, the Internet of Things is expected to drive the deployment of 50 billion connected devices and a value-at-stake of $19 trillions. What started as a concept for providing universal identities in the form of RFID has evolved into a domain encompassing numerous technologies from low-power sensor networks to cloud applications as well as a whole new breed of business models. From being a concept attracting plenty of research, the domain has been adopted by multiple standardization bodies consolidating the many industrial best practices across numerous verticals and industrial players from Machine-to-Machine approaches of service providers to the improvement of operational excellence by both larger and smaller enterprises.

The state of the Internet of Things has reached a breaking point with a large number of pure players providing offerings across the whole range of different services from low powered devices focusing on the ease-of-use to device management platforms including connectivity management. On the application side a number of platforms are available providing different sets of capabilities including support for application development to targeted platform where enterprises can develop their own vertical-targeted applications.

The focus of this session is to provide a unified view of the state of the Internet of Things in three connected, but distinct panels: 1) A panel focusing on the standardization of the Internet of Things including the major standardization bodies (OneM2M, ETSI, ITU, OMA, ARIB), 2) A panel focusing on the established pure players in the Internet of Things domain and 3) A panel focusing on major companies and their aspiration into the Internet of Things.

Panelists: Seth Newberry, OMA
Philip Jacobs, OneM2M
Bilel Jamoussi, ITU
Periklis Chatzimisios, TEIT
David Canavan, Axeda
Drew Johnson, Aeris
Peter Hartley, ElectricImp
Harvey Grasty, Xively

By 2020, the Internet of Things is expected to drive the deployment of 50 billion connected devices and a value-at-stake of $19 trillions. What started as a concept for providing universal identities in the form of RFID has evolved into a domain encompassing numerous technologies from low-power sensor networks to cloud applications as well as a whole new breed of business models. From being a concept attracting plenty of research, the domain has been adopted by multiple standardization bodies consolidating the many industrial best practices across numerous verticals and industrial players from Machine-to-Machine approaches of service providers to the improvement of operational excellence by both larger and smaller enterprises.

The state of the Internet of Things has reached a breaking point with a large number of pure players providing offerings across the whole range of different services from low powered devices focusing on the ease-of-use to device management platforms including connectivity management. On the application side a number of platforms are available providing different sets of capabilities including support for application development to targeted platform where enterprises can develop their own vertical-targeted applications.

The focus of this session is to provide a unified view of the state of the Internet of Things in three connected, but distinct panels: 1) A panel focusing on the standardization of the Internet of Things including the major standardization bodies (OneM2M, ETSI, ITU, OMA, ARIB), 2) A panel focusing on the established pure players in the Internet of Things domain and 3) A panel focusing on major companies and their aspiration into the Internet of Things.

Panelists: Seth Newberry, OMA
Philip Jacobs, OneM2M
Bilel Jamoussi, ITU
Periklis Chatzimisios, TEIT
David Canavan, Axeda
Drew Johnson, Aeris
Peter Hartley, ElectricImp
Harvey Grasty, Xively

By 2020, the Internet of Things is expected to drive the deployment of 50 billion connected devices and a value-at-stake of $19 trillions. What started as a concept for providing universal identities in the form of RFID has evolved into a domain encompassing numerous technologies from low-power sensor networks to cloud applications as well as a whole new breed of business models. From being a concept attracting plenty of research, the domain has been adopted by multiple standardization bodies consolidating the many industrial best practices across numerous verticals and industrial players from Machine-to-Machine approaches of service providers to the improvement of operational excellence by both larger and smaller enterprises.

The state of the Internet of Things has reached a breaking point with a large number of pure players providing offerings across the whole range of different services from low powered devices focusing on the ease-of-use to device management platforms including connectivity management. On the application side a number of platforms are available providing different sets of capabilities including support for application development to targeted platform where enterprises can develop their own vertical-targeted applications.

The focus of this session is to provide a unified view of the state of the Internet of Things in three connected, but distinct panels: 1) A panel focusing on the standardization of the Internet of Things including the major standardization bodies (OneM2M, ETSI, ITU, OMA, ARIB), 2) A panel focusing on the established pure players in the Internet of Things domain and 3) A panel focusing on major companies and their aspiration into the Internet of Things.

Panelists: Seth Newberry, OMA
Philip Jacobs, OneM2M
Bilel Jamoussi, ITU
Periklis Chatzimisios, TEIT
David Canavan, Axeda
Drew Johnson, Aeris
Peter Hartley, ElectricImp
Harvey Grasty, Xively

By 2020, the Internet of Things is expected to drive the deployment of 50 billion connected devices and a value-at-stake of $19 trillions. What started as a concept for providing universal identities in the form of RFID has evolved into a domain encompassing numerous technologies from low-power sensor networks to cloud applications as well as a whole new breed of business models. From being a concept attracting plenty of research, the domain has been adopted by multiple standardization bodies consolidating the many industrial best practices across numerous verticals and industrial players from Machine-to-Machine approaches of service providers to the improvement of operational excellence by both larger and smaller enterprises.

The state of the Internet of Things has reached a breaking point with a large number of pure players providing offerings across the whole range of different services from low powered devices focusing on the ease-of-use to device management platforms including connectivity management. On the application side a number of platforms are available providing different sets of capabilities including support for application development to targeted platform where enterprises can develop their own vertical-targeted applications.

The focus of this session is to provide a unified view of the state of the Internet of Things in three connected, but distinct panels: 1) A panel focusing on the standardization of the Internet of Things including the major standardization bodies (OneM2M, ETSI, ITU, OMA, ARIB), 2) A panel focusing on the established pure players in the Internet of Things domain and 3) A panel focusing on major companies and their aspiration into the Internet of Things.

Panelists: Seth Newberry, OMA
Philip Jacobs, OneM2M
Bilel Jamoussi, ITU
Periklis Chatzimisios, TEIT
David Canavan, Axeda
Drew Johnson, Aeris
Peter Hartley, ElectricImp
Harvey Grasty, Xively

By 2020, the Internet of Things is expected to drive the deployment of 50 billion connected devices and a value-at-stake of $19 trillions. What started as a concept for providing universal identities in the form of RFID has evolved into a domain encompassing numerous technologies from low-power sensor networks to cloud applications as well as a whole new breed of business models. From being a concept attracting plenty of research, the domain has been adopted by multiple standardization bodies consolidating the many industrial best practices across numerous verticals and industrial players from Machine-to-Machine approaches of service providers to the improvement of operational excellence by both larger and smaller enterprises.

The state of the Internet of Things has reached a breaking point with a large number of pure players providing offerings across the whole range of different services from low powered devices focusing on the ease-of-use to device management platforms including connectivity management. On the application side a number of platforms are available providing different sets of capabilities including support for application development to targeted platform where enterprises can develop their own vertical-targeted applications.

The focus of this session is to provide a unified view of the state of the Internet of Things in three connected, but distinct panels: 1) A panel focusing on the standardization of the Internet of Things including the major standardization bodies (OneM2M, ETSI, ITU, OMA, ARIB), 2) A panel focusing on the established pure players in the Internet of Things domain and 3) A panel focusing on major companies and their aspiration into the Internet of Things.

Panelists: Seth Newberry, OMA
Philip Jacobs, OneM2M
Bilel Jamoussi, ITU
Periklis Chatzimisios, TEIT
David Canavan, Axeda
Drew Johnson, Aeris
Peter Hartley, ElectricImp
Harvey Grasty, Xively

By 2020, the Internet of Things is expected to drive the deployment of 50 billion connected devices and a value-at-stake of $19 trillions. What started as a concept for providing universal identities in the form of RFID has evolved into a domain encompassing numerous technologies from low-power sensor networks to cloud applications as well as a whole new breed of business models. From being a concept attracting plenty of research, the domain has been adopted by multiple standardization bodies consolidating the many industrial best practices across numerous verticals and industrial players from Machine-to-Machine approaches of service providers to the improvement of operational excellence by both larger and smaller enterprises.

The state of the Internet of Things has reached a breaking point with a large number of pure players providing offerings across the whole range of different services from low powered devices focusing on the ease-of-use to device management platforms including connectivity management. On the application side a number of platforms are available providing different sets of capabilities including support for application development to targeted platform where enterprises can develop their own vertical-targeted applications.

The focus of this session is to provide a unified view of the state of the Internet of Things in three connected, but distinct panels: 1) A panel focusing on the standardization of the Internet of Things including the major standardization bodies (OneM2M, ETSI, ITU, OMA, ARIB), 2) A panel focusing on the established pure players in the Internet of Things domain and 3) A panel focusing on major companies and their aspiration into the Internet of Things.

Panelists: Seth Newberry, OMA
Philip Jacobs, OneM2M
Bilel Jamoussi, ITU
Periklis Chatzimisios, TEIT
David Canavan, Axeda
Drew Johnson, Aeris
Peter Hartley, ElectricImp
Harvey Grasty, Xively

By 2020, the Internet of Things is expected to drive the deployment of 50 billion connected devices and a value-at-stake of $19 trillions. What started as a concept for providing universal identities in the form of RFID has evolved into a domain encompassing numerous technologies from low-power sensor networks to cloud applications as well as a whole new breed of business models. From being a concept attracting plenty of research, the domain has been adopted by multiple standardization bodies consolidating the many industrial best practices across numerous verticals and industrial players from Machine-to-Machine approaches of service providers to the improvement of operational excellence by both larger and smaller enterprises.

The state of the Internet of Things has reached a breaking point with a large number of pure players providing offerings across the whole range of different services from low powered devices focusing on the ease-of-use to device management platforms including connectivity management. On the application side a number of platforms are available providing different sets of capabilities including support for application development to targeted platform where enterprises can develop their own vertical-targeted applications.

The focus of this session is to provide a unified view of the state of the Internet of Things in three connected, but distinct panels: 1) A panel focusing on the standardization of the Internet of Things including the major standardization bodies (OneM2M, ETSI, ITU, OMA, ARIB), 2) A panel focusing on the established pure players in the Internet of Things domain and 3) A panel focusing on major companies and their aspiration into the Internet of Things.

Panelists: Seth Newberry, OMA
Philip Jacobs, OneM2M
Bilel Jamoussi, ITU
Periklis Chatzimisios, TEIT
David Canavan, Axeda
Drew Johnson, Aeris
Peter Hartley, ElectricImp
Harvey Grasty, Xively
This paper proposes an evolution in Next Generation Broadcast Access aimed at enabling fixed rooftop and outdoor/mobile reception from a common wireless transport, providing indoor service capability to portable devices via content forwarding on a secondary wireless network (i.e., constituting a cooperative HetNet). The proposed method of Mixed-Mode Access introduces a Software Defined Remote Radio Head (SD-RRH), mounted on the rooftop, streaming IP to a centralized Content Distribution Point (CDP) both of which are maintained under configuration control from a network-side broadcast entity.

The SD-RRH provides the point of entry for over-the-air service distribution. The CDP in turn serves as Home Gateway aggregating transport from a variety of delivery mechanisms: over-the-air reception relayed from the SD-RRH, IP streaming via the consumer’s Internet Service Provider (ISP), non-real-time file transfer to a local storage device. The CDP then relays content to consuming devices via: HDMI or Wi-Fi or Wired Ethernet to static television receivers, and Wi-Fi to mobile/portable devices completing the last leg in a mixed-mode transport arrangement. The CDP additionally provides the facility to augment the over-the-air stream with ISP derived content for improved error concealment or guaranteed NR T file transfer for off-air playback. Broadcast content emanates from a common point in the home regardless of its network origin.

The paper presents the Next Generation Broadcast Access mechanism including the SD-RRH and CDP architectures as components of a mixed-media transport arrangement.

This paper explores the core tests required in a number of current wireless standards. including the SD-RRH and CDP architectures as components of a mixed-media transport arrangement.

Authors: Steve Tenney and Yupeng Jia, National Instruments

Across all wireless standards, manufacturers and service providers need to insure the performance and compliance of their devices via manufacturing test. These tests are designed to demonstrate the wireless device's ability to adhere to the requirements of a particular standard by exercising different functionality such as transmitter and receiver performance. With the continuing evolution of wireless standards across the globe, the need to evaluate key performance parameters such as power, frequency and modulation quality is greater than ever. The different wireless standardization bodies each present the unique specifications for the Physical Layer (PHY) in their standard documents. The implementation and specification limits may differ from standard to standard, but the concepts for, and requirements of, PHY analysis are largely transferable between them. This paper explores the core tests required in a number of current wireless standards and the common principles behind each family of tests.

The ICT CROWD (Connectivity management for eneRgy Optimised Wireless Dense networks) project is funded by the European Commission. Growing demand can only be satisfied by increasing access point density and combining different wireless technologies, for example (LTE, WiFi). Simply scaling existing networks by orders of magnitude, as required to fulfill traffic forecasts, would bring along several problems because of the limited backhaul capacity, the increased energy consumption, and the explosion of signaling. The FP7 project CROWD proposes a novel architecture based on Software-Defined Networking (SDN), as a solution to tame the density of wireless networks. CROWD pursues four key goals: (i) bringing density-proportional capacity where it is needed, (ii) optimising MAC mechanisms operating in very dense deployments by explicitly accounting for density as a resource rather than as an impediment, (iii) enabling traffic-proportional energy consumption, and (iv) guaranteeing mobile user’s quality of experience by designing smarter connectivity management solutions.

The CROWD Framework for tackling Challenges of Dense Small Cell Deployments using Software Defined Networking (SDN)

Authors: Arianna Morelli, INTECS
Rohit Gupta, National Instruments
Martin Drazler, Holger Karl, University of Paderborn
Vincenzo Mancuso, IMDEA Networks
Antonio De La Oliva, Universidad Carlos III de Madrid
Erick Bizouarn, Alcatel Lucent Bell Labs
Engin Zeydan, AVEA

Tuesday, 9 December 2014 • 15:45 – 18:00

With the explosive growth of smart mobile devices, innovations for wireless networks are in great and urgent need. Software defined networking (SDN) has great potential for the future networks. SDN has been gaining momentum recently in the context of future wired networks, however, the concept and technologies of SDN for mobile or wireless networks are still in the very early stages. This paper provides vision for SDN for future mobile networks, referred to as mobile SDN (MobiSDN). The discussions include MobiSDN’s definition, its architecture, its use cases including cloud based content distribution and augmented reality with big data analytics, and its potential enabling technologies.

Tuesday, 9 December 2014 • 15:45 – 18:00

Measurement of Radar Pulse Parameters with Under Sampled Signal

Authors: Sampath Desai, Abraham George, Varun Mannam, Jithin Madathil, National Instruments

Modern pulsed radar design requires generation of complicated modulated pulses that present significant measurement challenges. The pulses are phase or frequency modulated with narrow pulse width thus exhibiting high bandwidth. Hence the bandwidth of measuring device and data conversion rate play a vital role in meeting the desired measurement precision. The pulse parameters of interest to be measured are Rise Time (RT), Fall Time (FT), Pulse Width (PW), Pulse Repetition Frequency (PRF), Modulation type and power. The measurement of RT, FT significantly depends on number of samples on the pulse. The rise time can go very low .This implies that one needs to have higher sampling rate
with wider front-end analog filters to obtain accurate measurements. This requirement greatly increases the complexity of the test equipment hardware. We present a novel algorithm of estimating transient parameters of a train of pulses, sampled with an inadequate ADC.

Tuesday, 9 December 2014 • 15:45 – 18:00
IP-6: NI-AWR Integrated Framework for Radar Design
Author: Gent Paparisto, AWR Corp., Inc.

Modern radar systems are very complex and depend heavily on advanced signal processing algorithms to improve the detection performance of the radar. At the same time, the radio frontend must meet the specifications that are often the combination of available devices, implementation technologies, regulatory constraints, requirements from the system, and signal processing.

To overcome these challenges, there is increasing need for cooperation between digital and RF/microwave engineer such that the overall system performance metrics are jointly optimized across the two disparate domains.

In this presentation, we show how the AWR Design Environment can be combined with National Instruments LabVIEW and PXI instruments to design, validate, and prototype a radar system. NI-AWR integrated framework provides a unique avenue for both, digital and RF engineers, as well as system engineers, to collaborate on a complex radar system.

Tuesday, 9 December 2014 • 15:45 – 18:00
IP-7: Integrated RF and Digital Design-to-Prototype Flow with LabVIEW and AWR Design Environment
Author: Takao Inoue, National Instruments

Despite the significant advance in wireless communication system development over the last several decades, there remains to be a huge dividing wall between the RF/microwave circuit designers and baseband algorithm designers. Each area requires significant depth of knowledge to master, and as a result, has evolved to a rather disparate design flow, tool chain, and the way of thinking.

We take a brief overview of what National Instruments is doing to bring together different domain experts and to crossover insights from both domains to more effectively design, simulate, and prototype a wireless communication system. Specifically, we show how a fixed point algorithm developed in LabVIEW can be co-simulated with a realistic RF frontend in AWR Design Environment to get an early insight on the system behavior. Then we show a path to create a real-time baseband transceiver that will connect to the physical implementation of the designed RF frontend.

Tuesday, 9 December 2014 • 15:45 – 18:00
IP-8: Distributing and Expanding Processor Resources through National Instrument PXImc
Authors: Govind Viswambaran and Norm Kirchner, National Instruments

Certain applications & measurements (ex. Cellular LTE Testing) can require very complex data processing and cause an imbalance in the distribution of work handled by the processor in a PXI based test system. PXImc (multi-computing) enables users to add a second processor in a PXI based test solution to help distribute the workload and reestablish balance. Being able to distribute memory usage and processing horsepower, PXI test system developers can reduce overall test time and recover critical system resources.

Wednesday, 10 December 2014 • 15:45 – 18:00
IP-9: Prototyping High-Throughput mmWave Small Cells for 5G
Authors: Vincent Kotzsch and Eckhard Ohlmer, National Instruments

Major challenges have to be addressed until first mmWave small cell solutions are ready to enter the market. Therefore mmWave systems need either better hardware or more sophisticated digital impairment-compensation techniques.

We show how National Instruments addresses these challenges with their hardware-software prototyping platform, which is designed for scalability in channel count, bandwidth and signal processing capabilities. This platform is intended to provide researchers with a tool to test their mmWave concepts and prove their viability under practical constraints. The NI platform is part of the European MIWaves project, where it is used to prototype a multi-Gbit/s mmWave backhaul and multi-user access link. We will specifically focus on the highly parallel baseband implementation that is key to overcome the challenge of designing Gbit/s transmission systems.

Wednesday, 10 December 2014 • 15:45 – 18:00
IP-10: Required Frequency Rejection in 39 GHz Millimeter-Wave Small Cell Systems: Intel's Preliminary Results
Authors: Joongheon Kim, Liang Xian, Alexander Mal'tsev, Reza Arefi, Ali Sadri, Intel

This paper presents interference simulation study results in 39 GHz millimeter-wave small cell networks performed by Intel in terms of required frequency rejection calculation. In this simulation study, we calculated the amount of interferences gathered in a fixed service receive antenna. Two types of interferences are considered in this simulation study, i.e., (i) the accumulated interference to a fixed service receive antenna occurred by every single wireless transmission from a small cell base station to its associated small cell user (i.e., downlink interference); and (ii) the accumulated interference to a fixed service receive antenna occurred by every single wireless transmission from a small cell user to its associated small cell base station (i.e., uplink interference). Last, the future interference analysis scenarios are presented.

Wednesday, 10 December 2014 • 15:45 – 18:00
IP-11: Beamformed MAC: Medium Access Control with Beamforming in 5G Cellular Communications
Author: Ying Li, Samsung

Beamforming is one of the key technologies that 5G system would be using. Due to beamforming, the designs for medium access control (MAC) will have fundamental changes in many aspects comparing to the legacy system. This work discusses fundamentals of MAC with beamforming, which is called as beamformed MAC in here.

Four major aspects of beamformed MAC are discussed, namely beamformed network access, beamformed control and data communication, beamformed mobility control, and beamformed energy conservation in idle mode support. These aspects cover the main activities in a mobile station's 'life'. The discussion reveals the fundamental problems and aspects to consider for system design and operations for beamformed MAC, which are critical to 5G system design. The discussion also reveals the fundamental research problems from resource allocation perspective based on the insights that we obtained from system design, which serve as good directions to involve academic efforts for 5G system design.
1. Build a target list of companies that can hire you.

 The goal of the presented project is to answer these challenges through implementation of Policy and Charging Rules Function (PCRF) in Orange Polska network. The architecture required integration with multiple components including core network elements, billing systems, subscriber repository and provisioning. The implementation is based on available 3GPP/IEEE specifications with standard Diameter Gx, Sp/Sh, Sy and Rx interfaces.

 The offer based on the implemented platform was also awarded by “Mobile Internet” magazine as a “Service of the year”.

2. Strategically pursue positions via your referral network.

 When we have a multi-dimensional estimation problem with several impairments superimposed on the signal, we face the challenge of a chicken and egg situation, where one impairment, cannot be estimated because the other impairment is too high, to allow a successful estimation. In this scenario, the systems estimation capability severely hampers the modulation accuracy measurements.

3. Build relationships strategically in your target companies.

 The challenge is addressed by looking into the impairments sources present and the sequence in which these would have been introduced in the Transmitter chain and the Channel. By doing so impairments are handled in a suitable order and using an iterative approach. It also suggests how high frequency offset correction needs to be handled in various stages of the algorithm to allow successful estimation of IQ impairments. The IQ impairments considered are IQ gain imbalance, IQ skew and IQ Origin offset. The typical pseudo inversion technique used to estimate these is also touched upon.

4. Build a strategic referral network.

 We propose a fine resolution frequency estimator for a single frequency complex exponential signal weighted by a generalized cosine window the special cases of which include the Hann window, the Hamming window and the rectangular window. The proposed method estimates the frequency of the input windowed signal by taking N-point DFT of N time domain windowed samples of the signal and then non-linearly interpolating three DFT points comprising of the Peak Magnitude DFT point and its two immediate neighbors. For Hann and Hamming windowed sinusoid the proposed method provides better performance than Lyons’ method and the Root Mean Square Error (RMSE) of the new estimator closely follows the Cramer Rao Lower Bound (CLRB). For Rectangular Window the proposed method yields 2.5-3 dB better RMSE performance than Gandan’s estimator for higher frequency offsets. We also derive the RMSE of the proposed estimator w.r.t. input Signal-to-Noise Ratio (SNR) for low frequency offsets.

5. Strategically pursue positions via your referral network.

 We present our recent results on node architecture and efficient resource utilization in physical infrastructure of flexible optical networks as well as efficient VON mapping method.

6. Once hired, you plan your next move in 18-24 months

 We live in what is now called a referral economy. With over 80% of jobs being filled through referrals it is important that you have a network there to support you. We will be talking about building a target list of companies and then how to strategically network into the management chain so that they call you when a position opens up!

7. Go to #1

 We propose a fine resolution frequency estimator for a single frequency complex exponential signal weighted by a generalized cosine window the special cases of which include the Hann window, the Hamming window and the rectangular window. The proposed method estimates the frequency of the input windowed signal by taking N-point DFT of N time domain windowed samples of the signal and then non-linearly interpolating three DFT points comprising of the Peak Magnitude DFT point and its two immediate neighbors. For Hann and Hamming windowed sinusoid the proposed method provides better performance than Lyons’ method and the Root Mean Square Error (RMSE) of the new estimator closely follows the Cramer Rao Lower Bound (CLRB). For Rectangular Window the proposed method yields 2.5-3 dB better RMSE performance than Gandan’s estimator for higher frequency offsets. We also derive the RMSE of the proposed estimator w.r.t. input Signal-to-Noise Ratio (SNR) for low frequency offsets.
Modern RF test stations for wireless semiconductor devices must support wide-bandwidth complex-modulated waveforms, minimal operator intervention, faster test times, and lower cost. This paper offers a unique solution by multipurposing a single-receiver Vector Signal Transceiver (VST, a combined vector signal generator and analyzer), an instrument that is already present in modern RF test stations, along with an RF port module, to enable error-corrected S-parameter measurements of the Device Under Test (DUT). This paper will also examine the RF switching and test set architecture of the RF port module subsystem, and it includes the analysis of S-parameter measurements performed with serial sampling of incident and reflected waveforms by the single-receiver Vector Signal Analyzer (VSA) present in the VST. It will address the performance differences that the instrumentation achieves when using shared TX & RX Local Oscillators (LOs), versus independently synthesized LOs.

We show how the AWR Design Environment can be combined with National Instruments LabVIEW and test instruments to design, prototype and validate components or systems that comply with the WLAN 802.11ac standard, achieving higher throughput over its predecessors by using higher order modulation schemes, wider channel bandwidth, and more spatial streams. It presents unique challenges during design and implementation. Finding the right test equipment becomes a bigger challenge than before due to the increased test accuracy and bandwidth requirements.

We present a novel algorithm for estimating the delay (dT) between the RF input of an RF power amplifier (PA) and the modulated supply voltage that is generated by an envelope tracking (ET) power modulator, also known as a power tracker. This algorithm estimates the delay by introducing artificial delays in the acquired baseband output of the RF amplifier and searching for the delay that results in the lowest error vector magnitude (EVM). A sufficient amount of band limited AWGN is added to the baseband at the input of the PA input and power supply waveforms. The noise serves to decorrelate the output of the PA, improving delay estimation accuracy. The Algorithm has the ability to estimate delays in the range of 60ns and upwards within a error of +/-4ns for wideband signals like WCDMA and LTE. Test results using a Vector signal generator and analyzer are presented.

With the emergence of wideband communication signals, the design and characterization of today’s handset power amplifiers (PA) are becoming more complex. We introduce a reference architecture that characterizes simultaneously the DC, low-frequency (LF) and RF behavior of the PA module under ET, DPD and/or load pull conditions. The testbed combines vector signal generators (VSG), vector signal analyzers (VSA) to generate and measure RF modulated signals, DC power supplies or source measure units (SMU) to bias the PA, as well as an arbitrary waveform generator (AWG) to dynamically shape the DC bias (power modulator). Based on PXI technology, this reference architecture takes benefit from the shared 10MHz reference clock to tightly synchronize the different PXI modules with less than 1ns of channel-to-channel skew. Using network analysis calibration techniques, accurate characterization under wideband modulation conditions can then be performed down to the different DC, LF and RF test ports of the PA.
IP-23: A Novel Fast Method for evaluating the AM/AM and AM/PM Characteristics of a Power Amplifier using the Stored Reference Waveform

Authors: Gerardo Orozco Valdes, Craig E. Rupp, Michael J. Lyons, Sean P. Ferguson, Zakir Ahmed, National Instruments

We present a method for performing AM/AM and AM/PM measurements on power amplifiers by using stored reference waveforms and triggers. Although several similar techniques have been used in literature previously like in [1], [2] and [3]; the advantage with this method is that we do not require sharing of the Local Oscillator (LO) between the VSG and VSA. This measurement has the ability to correct frequency offsets in the range of +/-2MHz. Additionally in this method we use trigger lines/pins that are typically available in most commercial VSGs and VSA to help faster time synchronization and improve measurement speed.

IP-24: Advances in Motion Video Compression

Author: Raymond Water, Futureware

Conventional motion video algorithms are limited by their reliance upon a two-dimensional human visual model. Motion is encoded as a vector between a two-dimensional region of reference content and a target region to be reconstructed. The difficulty (and limit to compression efficiency) arises due to the lack of a good visual model to determine the visibility of the residue or error term.

What is presented is a compression algorithm based on a three-dimensional (time-varying) model of human vision, the Visibel(TM) model. This approach eliminates all redundant visual content within and between frames by removing all data which is imperceptible under the anticipated viewing conditions. Not only are aggressive compression ratios attained, but the resulting stream is continuously adaptive to dynamic transmission channel conditions.

A practical short-term application of the Visibel(TM) human visual model is presented - a pre-filter for existing motion estimation-based compression algorithms. This filter has been shown to produce dramatic compression savings on all popular and upcoming algorithms without requiring any changes to the playback devices. This technology is in the process of being adopted by industry leaders.
Due to the availability of reasonably inexpensive Internet connections, cloud computing is becoming increasingly more popular and widespread. Instead of maintaining servers locally, services are provided by remote virtual servers at data centers. In the recent years, a lot of research work has been done in the area of server redundancy and service migration. However, for many cloud computing users today, the access to the Internet constitutes a single point of failure. That is, if such an Internet connection is broken, all cloud services become unavailable. Further research on network resilience is necessary. The Simula Research Laboratory has therefore established the NORNET project, in order to create an open, multi-site research testbed platform for network resilience and multi-path transport experiments in real Internet setups. Particularly, all NORNET sites are multi-homed, i.e. connected to at least two Internet Service Providers (ISP). NORNET CORE denotes the wired part of the NORNET testbed. The testbed consists of research nodes distributed all over the country of Norway as well as further nodes in Sweden, Germany and China.

In order to illustratively demonstrate the functionalities of NORNET CORE in a multi-site, multi-homed Internet setup, a demonstration platform has been designed and implemented as part of a Masters thesis. The demonstration setup is particularly intended to also show the basic functionalities of NORNET CORE to an audience without a broader knowledge of resilience and multi-path transport. It particularly allows to demonstrate the implications of ISP combinations on QoS performance (bandwidth, delay, etc.), with support for IPv4 and IPv6 as well as state-of-the-art transport protocols like the Stream Control Transmission Protocol (SCTP) as well as Multi-Path TCP (MPTCP).

In this demo, we present Flowsim, a new OpenFlow switch simulator that requires no setup, and allows developers to experiment with various data plane capabilities provided by each version of OpenFlow (1.0, 1.1, 1.2, 1.3, 1.4).

Flowsim is a web application that enables the users to configure their own OpenFlow switches, issue OpenFlow messages, inject custom packet sequences into the data plane, and observe the resulting behavior. During a simulation the life cycle of an injected packet is visualized as it traverses the OpenFlow data plane. The user is presented with visualizations that included packet arrival, key extraction, table selection, flow selection, and action application.

Switch profiles are configured by specifying the actions, matches, and instructions capabilities that are supported by their switch. Users have the ability to configure a custom OpenFlow switch profile or choose a profile based on a vendor switch such as a Pica8. Once a switch is configured users issue OpenFlow messages such as Flowmod to populate the Flowtables of the switch. Users have the ability to craft packets and inject them into the data plane during the simulation. As a user crafted packet traverses the data plane, visualizations of the packets progress through data plane are presented to the user. The simulation results in a detailed summary of table selection flow selection, and action application.

As the 5G standard formulation evolves, it is crucial to have a flexible and scalable validation platform capable of handling any specification variation. This poster paper/demonstration presents an integrated 5G radio access experiment platform with extraordinary flexibility and scalability for newly defined features, and able to deliver higher data rates without changing hardware architecture. To be specific, this platform is developed to achieve a data rate higher than 1Gbps data rate by using 24 antennas and analog carrier aggregation technology. With this highly flexible and scalable platform, it not only significantly reduces the installation and hardware cost, but also ensures fast deployment of new technologies in practical platform. Such virtue greatly accelerates the production cycle, and permits reliable initial lab, field trials, proof of concepts, and system verification from the very early stage.

Next generation wireless networks (5G) have to cope with significant traffic increase due to heterogeneity of different applications such as high quality video and cloud based applications. A dense heterogeneous deployment of small cells such as pico/femto cells in addition to high power macro cells is foreseen as one of the potential solutions to achieve these requirements. Such a deployment requires innovation at all layers of communication protocol stack (PHY, MAC and higher layers). SDR prototyping for showing such algorithms requires a need to overcome several challenges which arise due to the use of different design flows to address different components of the system (i.e. RF, baseband, and protocol stack). The NI LabVIEW graphical system design software is able to address these challenges by providing a common development environment for all the heterogeneous
elements in the NI SDR system (i.e., the GPP, RTOS, FPGA, converters and RF components), with tight hardware/software integration and a good abstraction layer. This integrated design environment is the primary reason we chose NI LabVIEW SDR platform for prototyping and it enabled us to quickly reach an initial working version of our demonstration system and rapidly iterate on that design. In this demo, we show a LabVIEW based PXI platform in which LTE-like SISO OFDM PHY Layer is integrated with an open source NS-3 protocol stack to prototype PHY/MAC cross layer algorithms within EU FP7 CROWD project (http://www.ict-crowd.eu), which proposes Software Defined Networking (SDN) framework as a solution to tame dense deployment of wireless networks.

Wednesday, 10 December 2014 • 14:40 – 15:00
ID-13: Rapid Prototyping for 5G Transmission System Emulation
Author: Mustafa Gurcan, MKGYS Ltd

This prototype demonstration, developed by MKGYS Ltd, will present an end-to-end transmission and channel emulation rapid prototyping platform using a National Instruments USRP RIO 2953R transceiver and LabVIEW software for IEEE 802.11 p wireless communication over vehicle-to-vehicle communication channels.

This rapid prototyping platform could be configured to operate as a 2×2 MIMO with FPGA based real-time channel emulation and real RF transmission paths. The RF front end baseband processing operates at 120MS/s rate. The channel emulator operates at 100MS/s and the transceivers operate at the sampling rate determined by the transmission symbol rate. At different stages of the prototype implementation the sampling rates are either up or down converted using interpolation (up sampling) and decimation (down sampling) methods.

The National Instruments (NI) USRP RIO 2953R uses a Xilinx Virtex-7 FPGA. NI LabVIEW has been used to implement several Xilinx FIR filters using FPGA single cycle loops for filtering, interpolation and decimation purposes. Single Cycle Loops have been synchronised to provide an end-to-end streaming operation. The parameters for the IEEE 802.11p are used for USRP RIO 2953R transceiver implementation at FPGA level. The USRP RIO 2953 hardware and FPGA programming are used to provide a baseband vehicle-to-vehicle channel emulator in accordance with the vehicle-to-vehicle channel Power Delay Profiles.

The demonstration system uses LabVIEW FPGA programs for channel estimation and vehicle-to-vehicle communication transceiver implementation for a 5G mobile radio prototype system based on the IEEE 802.11 p wireless communication standard.

Wednesday, 10 December 2014 • 15:00 – 15:20
ID-14: Rapid Real-World System Prototyping for 5G Mobile
Authors: John Ye and Anna Acevedo, BEEcube Inc

Programmable hardware devices, such as FPGAs, are used frequently as prototyping tools for the implementation of new products, algorithms, and other proofs of concept. However, in order to integrate these prototypes into the real-world environments where they will be used, careful consideration must be given to the features of the platform in order to achieve the necessary interoperability requirements. In addition, the value of a prototype increases dramatically when system level designers can use it directly and rapidly iterate through different architectures and implementations without the need for independent design expertise and time-intensive specification and validation hand-offs. This demo highlights a complete hardware platform and software solution for rapid system prototyping of a wide range of target applications, including 5G femtocells, 5G user equipment, and media or Internet of Things gateways.

Wednesday, 10 December 2014 • 15:20 – 15:40
ID-15: Rapid Prototyping of 5G Concepts with NIs Wireless Research Platform
Authors: Markus Unger, Rene Nuessgen, Thorsten Draeger, Eckhard Ohlmer, National Instruments

NI hardware-software platforms’ enable researchers to innovate faster by providing a path from theoretical research to rapid prototyping. The modular hardware concept, including standard PCs, real time controllers and FPGA modules with fast interconnects, allows to scale prototypes in terms of processing power, channel count and I/O bandwidth. This hardware is made available to the researcher in an abstracted, unified fashion using a single programming environment – LabVIEW.

To further enable researchers, National Instruments has been developing a real time PHY/MAC layer IP research platform, based on the 3GPP LTE standard. Conceptually, this research platform is designed such that all the essential components, for example, coding, synchronization, modulation, control channels, etc. are made available to the researcher. Modularity allows to replace these components by the proprietary component the researcher focuses on, for instance, modulator and demodulator for 5G waveform research. This concept is expected to reduce the ramp-up time of 5G prototyping projects by orders of magnitude.

As part of this demonstration, we will show an application running on the out-of-the-box base line research platform. In a second part, we will show an example of how researchers are able to integrate their individual 5G concepts into the research platform.
Lund University and National Instruments will demonstrate a flexible test bed for massive MIMO, based on the NI PXI and USRP software defined radio platforms, combined with LabVIEW graphical system design software. Massive MIMO relies on coherent transmission and reception on large numbers of antenna elements, allowing efficient use of the propagation environment for spatial multiplex of many communication links. Massive MIMO is also considered one of the most promising technologies for substantial increase of spectral efficiency in future wireless systems. Theoretical studies show that, in favorable propagation conditions, both spectral and radiated energy efficiencies can be improved by one or more orders of magnitude. Initial measurements also show that real propagation environments can be favorable, in the sense that a large fraction of the theoretical gains can be harvested. The time has come to extend investigations from simulations and theory to real-life environments, with test beds capable of real-time massive MIMO transmissions in real communication scenarios. This is what is being demonstrated by Lund University and National Instruments. The demonstrated test bed is a subset of the 100-antenna test bed system built at Lund University using National Instruments hardware and software. We will show the overall architecture of the test bed and how it is configured for different tests. Real-time communication between the massive MIMO base station and single-antenna terminals will be demonstrated, in what we believe to be the first public demonstration of its kind.

Sparse code multiple access (SCMA), proposed as a key enabling new waveform and multiple access technology for 5G physical layer, has shown its capability of greatly increasing the number of simultaneously served connections (keeping the same spectrum efficiency required by each connection), the so-called system overload gain, and better link quality compared with existing non-orthogonal multiple access schemes, the so-called shaping gain and spreading diversity gain. On top of the direct gains, second order benefits such as low latency and low overhead multiple access have also been envisioned.

In order to verify the SCMA technology and its advantages in real communication systems, we have developed a SCMA based uplink multi-user system prototype on real-time hardware platform. The prototype system is built with the soft baseband concept, namely that all the baseband processing is done by CPU instead of FPGA/DSP. At the base station side, one server (Huawei Tecal RH2288) is responsible for all the baseband processing, to which standard commercial radio frequency components (Huawei product RUU3232) are connected. At the user side, the CPU of 1 laptop (MacBook Pro ME294CH/A) is used to model the processing of 2 users’ baseband, which then connects to 2 mobile RF modules developed by us. A user interface (UI) is developed to shown the real-time throughput of each UE, supporting also the real time change of user status and system operation modes.

The demonstration will highlight the advantages of Frequency Division Multiple Access for Filter Bank Multicarrier (FBMC) compared to OFDM in the context of fragmented spectrum and asynchronus mult-user access for the uplink of beyond 4G systems. This work is part of the European 5GNOW project (www.5gnow.eu), which is questioning the design targets of LTE and LTE-Advanced and the obedience to strict synchronism and orthogonality.

We plan to present a reconfigurable FPGA/ARM digital baseband hardware platform implementing fragmented spectrum processing both at transmit and receive parts using FBMC modulation and aiming at demonstrating the FBMC built-in filtering feature adapted to spectrum availability in the fragmented case. The proposed multi-user receiver architecture based on frequency domain processing combined with the fair frequency localization of the FBMC prototype filter provides an architecture that allows for more efficient multiuser asynchronous reception compared to OFDM. The objective of the demonstration is thus to prove the feasibility of FBMC multiuser access (FBMC-MA) in a multuser asynchronous scenario.

The setup will be composed of two user equipments (transmitters) and one receiver (acting as a base station). Real time transmission will be done through RF front ends at 2.7GHz via the National Instrument NI PXIe-1062 equipment. The application running on top of the physical layer is uplink video conference service and we demonstrate the robustness of FBMC compared to OFDM in the case of timing misalignment between the two user equipments (multi-user asynchronous access). The multiuser receiver architecture has been implemented on a Xilinx Kintex-7 (XC7K325T) FPGA of a custom-based platform developed by CEA-Leti.

Through the availability of large contiguous bandwidths and the resulting applicability of simple air interfaces without complex and expensive techniques for optimized spectrum utilization, the use of mmWave spectrum presents an exciting option for the huge traffic demand expected in future wireless 5G networks. With the small wavelength large antenna arrays become feasible with strong directional gains that easily compensate for the higher pathloss in frequencies of 30 GHz and above, and allow for a deployment of cellular access networks in dense urban outdoor scenarios.
The SW demo proposed for presentation shows such a deployment scenario in a live interactive radio simulation of a 5G enhanced Local Area network with mmWave propagation and channel model aligned with real-world measurements. It illustrates the dynamic cell selection triggered through terminal and scatterer mobility in a visually appealing 3D view of the dense urban street scenario, and it displays quantitative performance indications like throughput and handover statistics in various conditions and configurations.

Wednesday, 10 December 2014

17:40 – 18:00

ID-20: Bell Labs Alcatel-Lucent 5G UFMC Air Interface Demonstrator

Authors: Johannes Koppenborg, Thorsten Wild, Frank Schach, Hans-Peter Mayer, Alcatel-Lucent Bell Labs

A new waveform approach “Universal Filtered Multi-Carrier” (UFMC), also known as UF-OFDM, being better suited for 5G has been invented by Bell Labs. The new waveform supports reduced interference between synchronous and asynchronous traffic. This allows for efficient transportation of small packet services, reducing signaling overhead and battery consumption.

Furthermore, UFMC delivers a significant spectral side lobe level reduction, which allows handling very heterogeneous services (from ultra-broadband to small packets) in the same frequency band in a flexible and scalable manner.

A live demonstration of synchronous and asynchronous traffic will be presented and compared with OFDM. A high speed Video with synchronous broadband traffic and an application with an asynchronous MTC application will be shown simultaneously, using the UFMC waveform. To visualize the big advantages of UFMC, the same scenario will be shown with OFDM to have a direct comparison.

Additional poster material provides the context of Bell Labs’ vision and benefits on a new 5G air interface design.

Thursday, 11 December 2014 • 14:00 – 14:20

ID-21: Enabling M2M Communications and IoT Applications through LoRa Technology

Authors: Wael Guibene and Nicolas Sornin, France Semtech

This demonstration highlights the capabilities and different features of the LoRa technology (developed by Semtech) and LoRaMAC that enable efficient long range-low power M2M communications and IoT applications. This demonstration highlights the capabilities and different features of the LoRa technology (developed by Semtech) and LoRaMAC that enable efficient long range-low power M2M communications and IoT applications.

Thursday, 11 December 2014 • 14:20 – 14:40

ID-22: Noise Figure Measurement with National Instruments RF Platform

Authors: Andy Hinde and Yupeng Jia, National Instruments

One key figure of merit for a receiver is sensitivity, or the ability to detect low-magnitude signals. Receiver sensitivity is limited by the intrinsic noise present in the device itself, for which the amplifiers and mixers present in a receiver signal chain, is characterized by noise figure. Noise figure measurements are commonly performed upon amplifiers and other active devices during design, but typically not performed during production due to the additional test station equipment cost, as well as the additional, usually long, test times involved. Noise figure meters are a class of RF instrumentation dedicated to noise figure measurements, but a vector signal analyzer (VSA) and complementary system low-noise amplifier (LNA) can be used to perform these same noise figure measurements, reusing equipment typically already in place for an RF test station, while taking advantage of the fast measurement speeds of NI’s world class RF analyzers. This presentation will provide a brief background of various noise figure measurement techniques, and discuss their implementation with the NI RF platform. In recent years, numerous improvements have been made in noise figure measurements through better algorithmic understanding of the measurements, analyzers with better sensitivity performance, and less error-prone methods of processing noise power measurements. The complementary demo will focus on noise figure measurement using the Y-factor method.

Thursday, 11 December 2014 • 14:40 – 15:00

ID-23: A Versatile, Reprogrammable IEEE 802.11ac FPGA Implementation for Wireless R&D

Author: Robert Daniels, Kuma Signals, LLC

This demonstration presents a single-antenna IEEE 802.11ac wireless link with all physical layer processing and some MAC layer processing contained in the Xilinx Kintex 7 FPGA of the NI USRP RIO platform. The FPGA source is easily modified because it is entirely defined within the NI LabVIEW FPGA development environment. Low latency MAC testing is quickly enabled through an application programming interface (API) that already provides CRC-32, addressing, acknowledgements, and link configuration (e.g., bandwidth, modulation, coding, etc.). LabVIEW FPGA also drastically shortens the FPGA programming learning curve through graphical programming and drag-and-drop access to large library resources.
ID-24: Open Architecture NFC RF Analog Test Framework for PXI Instruments
Author: Dharmendra Lingaiah, National Instruments

Worldwide adoption of mobile phones with new technologies such as NFC embedded in them has seen an increasing upward trend. Chipset manufacturers are releasing multi-standard all inclusive chips with 802.11ac, Bluetooth, GPS, FM & NFC to enable this trend. Until recently, NFC enabled mobile phones which were used for personal communications and media players have seen this trend of being used as a payment, ticketing & connection initiator devices. According to research estimates, wireless attach rates for NFC are being predicted at greater than five billion units in the next few years. NFC RF Analog testing plays a pivotal role in shaping the future of this adoption trend. For Mobile Devices NFC Analog testing, the need of the hour is a minimal footprint, modular, faster and open software test architecture which allows for all technologies 802.11ac, Bluetooth, GPS, FM & NFC to be tested. NI has recently worked on a NFC Analog Test Framework, which will be discussed highlighting how signal processing principles can be applied for all tests as defined by NFC Forum.

We discuss the implementation of the NFC Forum related Signal Generation APIs and Signal Analysis APIs which cover the various Scenarios such as Power Reception, Carrier Frequency & Modulation Polling to Listening Device.

ID-25: Improved Test Times using Co-processing and FPGA-based Power Servo
Authors: Govind Viswambaran, Roy Kidagan, Norm Kirchner, National Instruments

One major factor in calculating the total cost of test is test times. This demo will demonstrate improved RF power amplifier test times by utilizing 2 technologies 1) co-processing and 2) FPGA-based power servo.

A test solution typically consists of an instrument to acquire data and a processor to compute measurements. The processing involved in some measurements like LTE RF standard is huge and can overload the processor. In such scenarios, a possible solution is to utilize multiple threads of a multi-core processor. The co-processing technique using PXI can further extends a processor’s capability by adding a second processor.

The NI PXIe-5644R Vector Signal Transceiver (VST) combines the features of a VSA, a VSG, and a user-programmable FPGA. Power servo is a big portion of a power amplifier test plan. The combination of VSA, VSG and FPGA allows for power servo that is FPGA-based which is much faster compared to traditional power servo methods.

In this demo, we will show some typical power amplifier measurements. We will then show an improvement in test times by using co-processing and FPGA-based power servo.

ID-26: Sub-Nyquist Cognitive Radio System
Authors: Etgar Israeli, Shahar Tsiper, Deborah Cohen, Eli Shoshan, Rolf Hilgendorf, Yonina C. Eldar, Technion

We demonstrate a real-time sub-Nyquist sampling and reconstruction system, based on prototype hardware and an embedded proprietary card, the modulated wideband converter (MWC). The MWC system is shown to comply with cognitive radios requirements.

ID-27: Air Interface Technology and Infrastructure Test Solution beyond 4G and toward 5G
Authors: Li-Ke Huang, Yuan Zhang, Jin Wang, Duc To, Chi-Ming Leung, Aeroflex Limited

Aeroflex TM500 test mobiles are designed in a modular structure. It is not only a platform for air interface but also a simulator for a whole cellular system. In the demonstration, we show the following new features in our TM500 products:

- 5G candidate air interface: Filter-Bank Multi-Carrier (FBMC) techniques are considered as a candidate for 5G air interface. FBMC air interface based on isotropic orthogonal transform algorithm (IOTA) has been developed and prototyped in our TM500 platform. The design of new Physical Layer protocol has been borrowed from the long term evolution (LTE) frame structure. We carry out comparison and show the advantages of FBMC over traditional OFDM in terms of throughput utilization and frequency error sensitivity.

- Interference cancelation techniques for 4G: In HetNet, high interference from macro-cell may cause problem to pico-cell cell-edge users. LTE-A Release 10 and latter allow users in multiple pico-cell to share some subframes without interference of data signals from the macro-cells (known as FeICIC in LTE Advanced). However, reference and synchronization signals transmitted by the macro-cells still cause interference. We present the techniques to mitigate: i) the interference of reference signal from the macro cell in decoding signals from a pico-cell and ii) the interference of synchronization signals from the macro-cells in detecting a new pico-cell.

- Multi-User Mobility Model: The multi-user version of TM500 allows testing base stations in system perspective. TM500 simulates multiple users in different channel conditions and acts as an entire multi-user cellular network environment in working with a base station or group of multiple base stations. This infrastructure test solution will be presented in the demonstration.

These features are carefully designed with practical constraints. The implementation process includes technical feasibility, MATLAB simulations, DSP implementation, and test and verification.
ID-28: A Sub-Nyquist UWB Communication System Demo

Author: Yonina Eldar, Technion

Abstract: We introduce a hardware implementation and demo of a sub-Nyquist Ultra Wideband (UWB) communication system. We employ compressed sensing (CS) techniques in order to exploit the sparse nature of the channel impulse response. The system operates in two phases: first the channel impulse response is estimated using foldable sampling, followed by data detection of the information. We use the Xampling framework to reduce the sampling rate at the analog to digital converter to 1/10 of the transmitted signal Nyquist rate, during both channel estimation phase and data detection.

ID-29: Full Duplex Radios

Authors: Minkeun Chung, Minsoo Sim, Byungwook Min, Dong Ku Kim, Chan-Byoung Chae, Yonsei University

Most prior work on full duplex radios has assumed that self-interference cancellation (SIC) is perfectly operated. In practice, however, SIC has been a critical issue to implement full duplex radios in a real wireless environment. We describe the main goals of the demo to overcome this issue. First, we implement an RF front-end that can provide SIC > 60dB with a combination of antenna and RF SIC. The remaining TX self-interference is further cancelled at the LNA balun using the tapped TX signal from a directional coupler. The LNA balun needs to be carefully designed to provide SIC with a minimal RX path loss and matched port impedance. The variable and delay unit will be designed to compensate the antenna SIC level and delay of the remaining TX signal. Second, we also demonstrate digital band SIC cancellation algorithms in addition to implementing modules of wireless standard. We design a full duplex system that is capable of supporting the LTE with wide bandwidth (>20MHz) and 20dBm (or higher) average TX power. In this demo, we aim at realizing a testbed for showcasing an in-band full duplex radio system that can simultaneously transmit and receive on the same frequency and time resource band using PXIe products by National Instruments.
The tutorial will cover the following:

Recent developments in HetSNets
- Range expansion in HetSNets
- Interference coordination techniques for HetSNets
- Time domain interference coordination
- Frequency domain interference coordination
- Power control based interference coordination
- Mobility management issues and handover parameter optimization
- Enhanced PDCCH (ePDCCH) as a solution to solve control channel problems
- ON/OFF cells and energy efficiency enhancements
- Use of 256 QAM for HetSNets
- Dynamic TDD for HetSNets

HetSNets performance analysis through stochastic geometry
- Structure of the SINR distribution calculation problem
- The role of Poisson Point Processes in enabling tractability of the SINR distribution problem
- Results on SINR distribution for single and multi-tier heterogeneous cellular networks
- Analytical methods for SINR analysis with power control, e.g., eICIC
- Spectral and energy efficiency analysis for HetSNets with eICIC

Deployment challenges for hyper-dense HetSNets
- 1 Gbps/user: Need for higher small cell densities, more spectrum, more antennas
- Mobility management: Dual connectivity and the Phantom cell concept
- Back-haul planning: Fiber, microwave and large-scale antenna systems
- WiFi and LTE coexistence in unlicensed bands

I-2: Learn the Details of OpenFlow with Interactive Switch Visualization
Authors: C. Jasson Casey and Colton Chojnacki, Flowsgrammable.org
Alex Sprinton, Texas A&M University, USA

This tutorial session is aimed at researchers, hardware designers, software developers, and network operators that need a detailed explanation of the OpenFlow network abstractions and protocols. Participants will learn about the core data model that underlies the five existing versions of OpenFlow, its associated interface and semantics for packet processing. Focus will be given to the differences between OpenFlow versions and the process of writing OpenFlow applications. The lectures will use Flowsgrammable’s visual OpenFlow simulator, Flowvisim, to allow participants to follow lecture examples and explore key ideas.

In this tutorial, we will present the OpenFlow abstract packet processing pipeline and its associated interface. We will provide an in-depth description of the data model of the existing five versions, describe the associated interface, contrast the differences between versions, and illustrate the feature discovery process. This will be accomplished with a combination of lecture material and interactive web-based visualization of an OpenFlow switch. Participants will be able to follow along and configure their own OpenFlow switches, issue OpenFlow messages, inject custom packet sequences into the pipeline, and observe the resulting behavior. Most importantly, participants develop an understanding of how the OpenFlow primitives: instructions, actions, meters, groups, ports, and queues can be used to specify common network functions. Finally, we will discuss current issues and research efforts as well as the technology outlook for OpenFlow and SDN technologies.

I-3: Rapid Prototyping of Real-time Wireless Systems with NI LabVIEW
FREE: Sponsored by National Instruments

In today’s competitive wireless research space, the ability to quickly prototype ideas on hardware using real signals is more important than ever. In this half day tutorial, you will gain hands-on experience with National Instruments’ integrated hardware and software platform for rapid prototyping of real-time wireless systems using the NI LabVIEW Communications System Design Suite (LabVIEW Communications) and the NI USRP-RIO FPGA-based software defined radio. At the end of the tutorial, you will be able to design, simulate, and prototype a 20 MHz LTE-based real-time OFDM link on a high performance FPGA, and transmit data over the air using the link you design on the NI USRP-RIO. The tutorial will cover the most important aspects of the idea-to-prototype flow in a single tool, including floating-point simulation, floating-point to fixed-point conversion, HW/SW partitioning, performance-complexity tradeoffs, and finally verification and testing on an FPGA-based software-defined radio. Note: no prior experience with FGPA’s or NI hardware or software tools is required.

I-4: CloudRAN Architectures, Virtualization and Connectivity Solutions for 5G Cellular Communications
Author: Raghu M. Rao, Xilinx Inc., USA

The enormous growth in wireless network traffic has spurred the evolution of radio access networks. There is also a push towards energy efficiency (green base-stations) while trying to minimize cost of installing and maintaining base stations. Heterogeneous networks (HETNETs) which overlay “small cells” and Wi-Fi networks on top of the traditional macro cells are emerging to address the issues of increasing capacity and improving coverage. CloudRAN is another technology that is paradigm shift in radio access networks and its main motivation was to reduce costs and improve energy efficiency. CloudRANs centralize base-station processing by bringing signals from many different cells into a central server room and demodulate the signals in this one location. This minimizes operational costs and provides a means for energy efficiency also and now it is being seen as a means to improve network performance as well by minimizing inter-cell interference.

In this tutorial, we will present the evolution of the macro-cell RAN to the CloudRAN and also present a scheme for virtualization of baseband processing in a 3GPP-LTE network. We further discuss the various architectures for partitioning baseband processing which will determine the amount of data throughput needed between the base station pool and the radio heads (also known as front-hauling). We present some of the connectivity solutions being explored for front-hauling and for data transfer among the pool of physical resources for baseband processing.

I-5: From 4G to 5G: a (r)evolution?
Authors: Marcin Dryjanski and Sławomir Pietrzak

The session presents background and main features of LTE-Advanced being a 4G system, including Carrier Aggregation, CoMP and higher order MIMO. We firstly present 3GPP LTE from Release 8 up to Release 12 and then move to 5G concepts as seen by the research communities.

Monday, 8 December 2014 • 08:30 – 12:30

I-1: Heterogeneous and Small Cell Networks: Theory, Standardization and Deployment

Authors: Ismail Guvenc, Florida International University, USA
David Lopez-Perez, Bell Laboratories, Alcatel-Lucent, USA
Sayandeep Mukherjee, DOCOMO Innovations Inc., USA

The tutorial will cover the following:

- The role of Poisson Point Processes in enabling tractability of the SINR distribution problem
- Results on SINR distribution for single and multi-tier heterogeneous cellular networks
- Analytical methods for SINR analysis with power control, e.g., eICIC
- Spectral and energy efficiency analysis for HetSNets with eICIC

Monday, 8 December 2014 • 13:30 – 17:30

I-3: Rapid Prototyping of Real-time Wireless Systems with NI LabVIEW

FREE: Sponsored by National Instruments

I-5: From 4G to 5G: a (r)evolution?

Authors: Marcin Dryjanski and Sławomir Pietrzak

LTE-Advanced as defined by 3GPP fulfills the ITU-R definition for being 4G system. One of the most important requirement for such a system is achieving 1Gbps/s for low mobile service. As the deployments of 4G already took off, a concept of 5G is brought to the research community. Will the 5G be “just” an evolution of 4G, a totally new radio interface or a communications revolution?

The session presents background and main features of LTE-Advanced being a 4G system, including Carrier Aggregation, CoMP and higher order MIMO. We firstly present 3GPP LTE from Release 8 up to Release 12 and then move to 5G concepts as seen by the research communities.
Friday, 12 December 2014 • 08:30 – 12:30
I-6: Physical Layer Modeling of LTE and LTE-Advanced Systems in MATLAB

Author: Houman Zarrinkoub, MathWorks, USA

In this tutorial, we will showcase the use of MATLAB® and its new capabilities for physical layer modeling of LTE and LTE-A standards. The tutorial will introduce the LTE System Toolbox, which provides standard-compliant functions and tools for the design, simulation, and verification of LTE and LTE-Advanced communications systems. Through demonstrations you will learn how the Toolbox can help you measure and analyze the end-to-end performance of LTE and LTE-A communications links, can provide conformance test benches and wave forms to verify your designs and may be used as a golden reference model ensuring that your implementations comply with the LTE standard.

Friday, 12 December 2014 • 08:30 – 12:30
I-7: Low Power Wide Area Machine to Machine Communications using LTE

Authors: Amitava Ghosh, Rapeepat Ratasuk, Nitin Mangalvedhe, Nokia Solutions and Networks, USA

The Internet of Things (IoT) refers to interconnection and exchange of data among devices. This capability will bring about tremendous improvements in user experience and system efficiency. To support IoT, machine-to-machine (M2M) communication is needed. An estimated 50 billion connected devices will be deployed by 2020 and the total M2M revenue is expected to grow from $200 billion in 2011 to $1.2 trillion in 2022. M2M therefore are expected to be a key driver for growth in cellular. With the widespread introduction of LTE and decommissioning of legacy systems, M2M services on LTE are under consideration by many cellular operators. In LTE Rel-12, low cost M2M devices with material cost comparable to EGPRS devices are being introduced. In addition, coverage enhancement techniques, which would be required to support M2M, are being standardized in Rel-13.

The tutorial will cover the basics of LTE physical layer and data transmission. Although M2M services and requirements vary widely, we will focus on low–rate, low–mobility, and delay–tolerant applications such as smart meters, tracking, home security, remote diagnostics, and sensors. The introduction of low–cost devices in LTE to support these services will be discussed. Coverage enhancements techniques, which would be required to support M2M, will be standardized to allow LTE coverage to be extended to devices in poor locations such as the basement. In addition, system coverage and capacity will be addressed. We will show that LTE can be used to efficiently serve both human and machine traffic. In addition, capacity results for some representative M2M services will be provided and their impact on human traffic will be discussed. Finally, M2M analysis using real–world deployment scenarios will be presented.

Friday, 12 December 2014 • 13:30 – 17:30
I-8: Vehicular Networking

*Authors: Onur Altintas, Toyota InfoTechnology Center, Co. Ltd, Japan
Falko Dressler, University of Paderborn, Germany*

Researchers from academia and industry recently met at an international Dagstuhl seminar to discuss open research challenges as well as open issues related to market-oriented design. We are now entering an era that might change the game in road traffic management. This is supported by the U.S. federal government announcement in February 2014 that National Highway Traffic Safety Administration (NHTSA) plans to begin working on a regulatory proposal that would require V2V devices in new vehicles in a future year. This NHTSA announcement coincides with the final standardization of higher layer networking protocols in Europe by the ETSI.

From an industry point of view, vehicular networking serves as one of the most important enabling technologies required to implement a myriad of applications related to vehicles, vehicle traffic, drivers, passengers and pedestrians. In this tutorial, we will look into applications and use cases of vehicular networking followed by an overview of the standardization activities. Next we will cover the communication protocol design as well as the deployment plans. We will also briefly talk about simulation tools for evaluation of various protocol designs. Before concluding, we will take a glimpse at the recently emerging reality of electric vehicles and autonomous vehicles along with the issues surrounding them. Finally we will conclude with open issues that require further research.
In this workshop, we present the state-of-the-art in the development of New Air Interfaces for 5G which efficiently support such application visions. The workshop program will discuss several new waveforms for 5G (including a scientific-oriented waveform tutorial) from an industry-driven perspective and thereby discuss design principles, implementation details, performance results, and first demonstrations of selected results. Moreover all key players in this field will present their distinctive technical viewpoint on new air interfaces and possible candidate selection. In the course of this workshop, the participants will have the chance to discuss and connect with influential industry people working in this field. Altogether, it is an excellent opportunity to collect the latest views and developments regarding an exciting open field on the road towards 5G.

The landscape for public safety communications is changing rapidly. Traditional land mobile radio used by public safety agencies is rapidly being supplemented by wireless broadband communication. The National Public Safety Broadband Network (also known as FirstNet) will provide public safety users with LTE capability for data access. Advanced technologies such as cognitive radio, channel bonding across disparate networks, and steerable multiband antennas have the potential to provide public safety with significant communications capabilities that can meet their unique requirements for ubiquitous, robust, high capacity communications capabilities. In addition, capabilities such as mission critical voice over an LTE network, management of spectrum resources to meet mission requirements, and balancing local control of network operations without compromising interoperability among local agencies are all key to successful deployment and utilization of FirstNet.

The objective of this workshop is to identify from a public safety user's perspective the technology needs for communications, to discuss the federal government role in sponsoring research, development, test and evaluation of evolving technology to meet those needs, and to identify promising technologies that could have near- and long-term impact on both future land mobile radio systems as well as wireless broadband networks of the future.
WELCOME RECEPTION & EXHIBIT OPENING

Monday, 8 December 2014
19:00 – 21:30

Enjoy networking with old friends as well as new acquaintances while listening to local music and partaking of traditional food and beverages with the unique opportunity of being immersed in the heart of the “Live Music Capital of the World.” Peruse our world-class exhibits to learn about the latest products and services. In parallel to the reception, there will be the unique opportunity to visit various demonstration events from the industry workshops (‘Demo Night’).

AWARDS CEREMONY

Tuesday, 9 December 2014
12:15 – 14:00

The Awards Ceremony honors the achievements of IEEE and IEEE Communications Society members. The Society’s Career & Service Awards pay tribute to technical professionals whose exceptional achievements and outstanding contributions have made a lasting impact on technology, society, the engineering profession, and humanity. Recipients of these Awards are recognized as the most influential members in their chosen field. Career award recipients are revered for their resolve to discover, extend, or complement technological advancements in education, industry, research and service. Service award recipients are recognized and honored for their distinguished and exemplary service to ComSoc over a sustained period of time. Each year, new recipients join ComSoc’s prestigious award honoree list through a selective nomination and approval process.

CONFERENCE BANQUET

Wednesday, 10 December 2014
18:30 – 22:30
Bullock Texas State History Museum

The conference banquet will provide an opportunity for attendees to participate in a unique experience at a truly world-class venue. Attendees will arrive at the Bullock Texas State History Museum to the sounds of a strolling Mariachi band. Guests can then proceed inside to enjoy three floors of the amazing Story of Texas exhibit galleries: Land (first floor); Identity (second floor); and, Opportunity (third floor). After exploring the exhibits, the banquet will begin with a brief program beginning at 19:45 – followed by dinner and networking with your colleagues.
REGISTRATION

INDUSTRY PROGRAM REGISTRATION

<table>
<thead>
<tr>
<th>Event</th>
<th>ON/BY 1 NOVEMBER</th>
<th>AFTER 1 NOVEMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Industry Registration (3 day, Tuesday - Thursday)</td>
<td>US$400</td>
<td>US$500</td>
</tr>
<tr>
<td>One (1) day Registration (Select Day: Tue, Wed, Thu)</td>
<td>US$250</td>
<td>US$350</td>
</tr>
<tr>
<td>Tutorials (Monday and/or Friday)</td>
<td>US$100 each</td>
<td>US$150 each</td>
</tr>
<tr>
<td>Workshops (Monday and/or Friday)</td>
<td>US$250 per day</td>
<td>US$350 per day</td>
</tr>
</tbody>
</table>

Awards Lunch

US$75 (as available)

Conference Banquet:

US$125 (as available)

To register online or download the registration form, visit www.ieee-globecom.org/2014/registration.html

HOTEL

The IEEE GLOBECOM 2014 has chosen as its headquarters hotel, the Hilton Austin. All Sessions and Exhibits will be held at the Hilton Austin.

HOTEL RATES

- **Room Rate:**
 - $199.00 + tax (Single and Double)
- **Reservations must be made no later than 4 November 2014.**

>>> Group Code: <<<

IEEE

To reserve your accommodations, visit www.ieee-globecom.org/2014/hotel.html